1,162 research outputs found

    Power network and smart grids analysis from a graph theoretic perspective

    Get PDF
    The growing size and complexity of power systems has given raise to the use of complex network theory in their modelling, analysis, and synthesis. Though most of the previous studies in this area have focused on distributed control through well established protocols like synchronization and consensus, recently, a few fundamental concepts from graph theory have also been applied, for example in symmetry-based cluster synchronization. Among the existing notions of graph theory, graph symmetry is the focus of this proposal. However, there are other development around some concepts from complex network theory such as graph clustering in the study. In spite of the widespread applications of symmetry concepts in many real world complex networks, one can rarely find an article exploiting the symmetry in power systems. In addition, no study has been conducted in analysing controllability and robustness for a power network employing graph symmetry. It has been verified that graph symmetry promotes robustness but impedes controllability. A largely absent work, even in other fields outside power systems, is the simultaneous investigation of the symmetry effect on controllability and robustness. The thesis can be divided into two section. The first section, including Chapters 2-3, establishes the major theoretical development around the applications of graph symmetry in power networks. A few important topics in power systems and smart grids such as controllability and robustness are addressed using the symmetry concept. These topics are directed toward solving specific problems in complex power networks. The controllability analysis will lead to new algorithms elaborating current controllability benchmarks such as the maximum matching and the minimum dominant set. The resulting algorithms will optimize the number of required driver nodes indicated as FACTS devices in power networks. The second topic, robustness, will be tackled by the symmetry analysis of the network to investigate three aspects of network robustness: robustness of controllability, disturbance decoupling, and fault tolerance against failure in a network element. In the second section, including Chapters 4-8, in addition to theoretical development, a few novel applications are proposed for the theoretical development proposed in both sections one and two. In Chapter 4, an application for the proposed approaches is introduced and developed. The placement of flexible AC transmission systems (FACTS) is investigated where the cybersecurity of the associated data exchange under the wide area power networks is also considered. A new notion of security, i.e. moderated-k-symmetry, is introduced to leverage on the symmetry characteristics of the network to obscure the network data from the adversary perspective. In chapters 5-8, the use of graph theory, and in particular, graph symmetry and centrality, are adapted for the complex network of charging stations. In Chapter 5, the placement and sizing of charging stations (CSs) of the network of electric vehicles are addressed by proposing a novel complex network model of the charging stations. The problems of placement and sizing are then reformulated in a control framework and the impact of symmetry on the number and locations of charging stations is also investigated. These results are developed in Chapters 6-7 to robust placement and sizing of charging stations for the Tesla network of Sydney where the problem of extending the capacity having a set of pre-existing CSs are addressed. The role of centrality in placement of CSs is investigated in Chapter 8. Finally, concluding remarks and future works are presented in Chapter 9

    Proactive defense strategies against net load redistribution attacks in cyber-physical smart grids

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringHongyu WuRecent advances in the cyber-physical smart grid (CPSG) have enabled a broad range of new devices based on information and communication technology (ICT). An open network environment in CPSG provides frequent interaction between information and physical components. However, this interaction also exposes the ICT-enabled devices to a growing threat of cyberattacks. Such threats have been alerted by recent cybersecurity incidents, and the security issues have strongly restricted the development of CPSG. Among various CPS cybersecurity incidents, cyber data attacks invade the cyber layer to destroy data integrity. Through elaborately eavesdropping on the transferred measurement data, the attacks can mislead the state estimation (SE) while keeping stealthy to conventional bad data detection (BDD). Due to the SE being the critical function of CPSG control, the cyber data attacks may cause massive economic loss, power system instability, or even cascading failures. Therefore, this dissertation focuses on the detection of stealthy data integrity attacks. This dissertation first performs a thorough review of the state-of-the-art cyber-physical security of the smart grid. By focusing on the physical layer of the CPSG, this work provides an abstracted and unified state-space model in which cyber-physical attack and defense models can be effectively generalized. The existing cyber-physical attacks are categorized in terms of their target components. In addition, this work discusses several operational and informational defense approaches that present the current state-of-the-art in the field, including moving target defense (MTD), watermarking, and data-driven strategies. The challenges and future opportunities associated with the smart grid cyber-physical security is also discussed. Further, a real-time digital simulator, namely Typhoon HIL, is utilized to visualize the random MTD against false data injection (FDI) attacks. Given the review section as a background, a hidden, coordinated net load redistribution attack (NLRA) in an AC distribution system is proposed. The attacker's goal is to create violations in nodal voltage magnitude estimation. An attacker can implement the NLRA strategy by using the local information of an attack region and power flow enhanced deep learning (PFEDL) state estimators. The NLRA is modeled as an attacker's modified AC optimal power flow problem to maximize the attack impact. Case study results indicate the PFEDL-based SE can provide the attacker with accurate system states in a low observable distribution system where conventional lease square-based SE cannot converge. The stealthiness of the hidden NLRA is validated in multiple attack cases. The influence of NLRA on the distribution system is assessed, and the impact of attack regions, attack timing, and attack area size are also revealed. Next, this dissertation highlights that current MTD strategies myopically perturb the reactance of D-FACTS lines without considering the system voltage stability. Voltage instability induced by MTDs is illustrated in a three-bus system and two more complicated systems with real-world load profiles. Further, a novel MTD framework that explicitly considers system voltage stability using continuation power flow and voltage stability indices is proposed to avoid MTD-induced voltage instability. In addition, this dissertation mathematically derives the sensitivity matrix of voltage stability index to line impedance, on which an optimization problem for maximizing voltage stability index is formulated. This framework is tested on the IEEE 14-bus and the IEEE 118-bus transmission systems, in which sophisticated attackers launch NLRAs. The simulation results show the effectiveness of the proposed framework in circumventing voltage instability while maintaining the detection effectiveness of MTD. Case studies are conducted with and without the proposed framework under different MTD planning and operational methods. The impacts of the proposed two methods on attack detection effectiveness and system economic metrics are also revealed. Finally, this dissertation proposes utilizing smart inverters to implement a novel meter encoding scheme in distribution systems. The proposed meter encoding scheme is a software-based active detection method, which neither requires additional hardware devices nor causes system instability, compared with MTD and watermarking. By elaborately constructing the encoding vector, the proposed smart-inverter-based meter encoding can mislead the attacker's SE while being hidden from alert attackers. In addition, by utilizing the topology of radial distribution systems, the proposed encoding scheme encodes fewer meters than current schemes when protecting the same number of buses, which decreases the encoding cost. Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed meter encoding scheme can mislead the attacker's state estimation on all the downstream buses of an encoded bus without arousing the attacker's suspicion. FDI attacks constructed based on the misled estimated states are highly possible to trigger the defender's BDD alarm

    How to Place Your Apps in the Fog -- State of the Art and Open Challenges

    Full text link
    Fog computing aims at extending the Cloud towards the IoT so to achieve improved QoS and to empower latency-sensitive and bandwidth-hungry applications. The Fog calls for novel models and algorithms to distribute multi-service applications in such a way that data processing occurs wherever it is best-placed, based on both functional and non-functional requirements. This survey reviews the existing methodologies to solve the application placement problem in the Fog, while pursuing three main objectives. First, it offers a comprehensive overview on the currently employed algorithms, on the availability of open-source prototypes, and on the size of test use cases. Second, it classifies the literature based on the application and Fog infrastructure characteristics that are captured by available models, with a focus on the considered constraints and the optimised metrics. Finally, it identifies some open challenges in application placement in the Fog

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl

    A Review of Current Research Trends in Power-Electronic Innovations in Cyber-Physical Systems.

    Get PDF
    In this paper, a broad overview of the current research trends in power-electronic innovations in cyber-physical systems (CPSs) is presented. The recent advances in semiconductor device technologies, control architectures, and communication methodologies have enabled researchers to develop integrated smart CPSs that can cater to the emerging requirements of smart grids, renewable energy, electric vehicles, trains, ships, internet of things (IoTs), etc. The topics presented in this paper include novel power-distribution architectures, protection techniques considering large renewable integration in smart grids, wireless charging in electric vehicles, simultaneous power and information transmission, multi-hop network-based coordination, power technologies for renewable energy and smart transformer, CPS reliability, transactive smart railway grid, and real-time simulation of shipboard power systems. It is anticipated that the research trends presented in this paper will provide a timely and useful overview to the power-electronics researchers with broad applications in CPSs.post-print2.019 K

    Operational moving target defences for improved power system cyber-physical security

    Get PDF
    In this work, we examine how Moving Target Defences (MTDs) can be enhanced to circumvent intelligent false data injection (FDI) attacks against power systems. Initially, we show how, by implementing state-of-the-art topology learning techniques, we can commit full-knowledge-equivalent FDI attacks against static power systems with no prior system knowledge. We go on to explore how naive applications of topology change, as MTDs, can be countered by unsupervised learning-based FDI attacks and how MTDs can be combined with physical watermarking to enhance system resilience. A novel intelligent attack, which incorporates dimensionality reduction and density-based spatial clustering, is developed and shown to be effective in maintaining stealth in the presence of traditional MTD strategies. In resisting this new type of attack, a novel implementation of MTD is suggested. The implementation uses physical watermarking to drive detection of traditional and intelligent FDI attacks while remaining hidden to the attackers. Following this, we outline a cyber-physical authentication strategy for use against FDI attacks. An event-triggered MTD protocol is proposed at the physical layer to complement cyber-side enhancements. This protocol applies a distributed anomaly detection scheme based on Holt-Winters seasonal forecasting in combination with MTD implemented via inductance perturbation. To conclude, we developed a cyber-physical risk assessment framework for FDI attacks. Our assessment criteria combines a weighted graph model of the networks cyber vulnerabilities with a centralised residual-based assessment of the physical system with respect to MTD. This combined approach provides a cyber-physical assessment of FDI attacks which incorporates both the likelihood of intrusion and the prospect of an attacker making stealthy change once intruded.Open Acces

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    On power system automation: a Digital Twin-centric framework for the next generation of energy management systems

    Get PDF
    The ubiquitous digital transformation also influences power system operation. Emerging real-time applications in information (IT) and operational technology (OT) provide new opportunities to address the increasingly demanding power system operation imposed by the progressing energy transition. This IT/OT convergence is epitomised by the novel Digital Twin (DT) concept. By integrating sensor data into analytical models and aligning the model states with the observed system, a power system DT can be created. As a result, a validated high-fidelity model is derived, which can be applied within the next generation of energy management systems (EMS) to support power system operation. By providing a consistent and maintainable data model, the modular DT-centric EMS proposed in this work addresses several key requirements of modern EMS architectures. It increases the situation awareness in the control room, enables the implementation of model maintenance routines, and facilitates automation approaches, while raising the confidence into operational decisions deduced from the validated model. This gain in trust contributes to the digital transformation and enables a higher degree of power system automation. By considering operational planning and power system operation processes, a direct link to practice is ensured. The feasibility of the concept is examined by numerical case studies.The electrical power system is in the process of an extensive transformation. Driven by the energy transition towards renewable energy resources, many conventional power plants in Germany have already been decommissioned or will be decommissioned within the next decade. Among other things, these changes lead to an increased utilisation of power transmission equipment, and an increasing number of complex dynamic phenomena. The resulting system operation closer to physical boundaries leads to an increased susceptibility to disturbances, and to a reduced time span to react to critical contingencies and perturbations. In consequence, the task to operate the power system will become increasingly demanding. As some reactions to disturbances may be required within timeframes that exceed human capabilities, these developments are intrinsic drivers to enable a higher degree of automation in power system operation. This thesis proposes a framework to create a modular Digital Twin-centric energy management system. It enables the provision of validated and trustworthy models built from knowledge about the power system derived from physical laws, and process data. As the interaction of information and operational technologies is combined in the concept of the Digital Twin, it can serve as a framework for future energy management systems including novel applications for power system monitoring and control, which consider power system dynamics. To provide a validated high-fidelity dynamic power system model, time-synchronised phasor measurements of high-resolution are applied for validation and parameter estimation. This increases the trust into the underlying power system model as well as the confidence into operational decisions derived from advanced analytic applications such as online dynamic security assessment. By providing an appropriate, consistent, and maintainable data model, the framework addresses several key requirements of modern energy management system architectures, while enabling the implementation of advanced automation routines and control approaches. Future energy management systems can provide an increased observability based on the proposed architecture, whereby the situational awareness of human operators in the control room can be improved. In further development stages, cognitive systems can be applied that are able to learn from the data provided, e.g., machine learning based analytical functions. Thus, the framework enables a higher degree of power system automation, as well as the deployment of assistance and decision support functions for power system operation pointing towards a higher degree of automation in power system operation. The framework represents a contribution to the digital transformation of power system operation and facilitates a successful energy transition. The feasibility of the concept is examined by case studies in form of numerical simulations to provide a proof of concept.Das elektrische Energiesystem befindet sich in einem umfangreichen Transformations-prozess. Durch die voranschreitende Energiewende und den zunehmenden Einsatz erneuerbarer Energieträger sind in Deutschland viele konventionelle Kraftwerke bereits stillgelegt worden oder werden in den nächsten Jahren stillgelegt. Diese Veränderungen führen unter anderem zu einer erhöhten Betriebsmittelauslastung sowie zu einer verringerten Systemträgheit und somit zu einer zunehmenden Anzahl komplexer dynamischer Phänomene im elektrischen Energiesystem. Der Betrieb des Systems näher an den physikalischen Grenzen führt des Weiteren zu einer erhöhten Störanfälligkeit und zu einer verkürzten Zeitspanne, um auf kritische Ereignisse und Störungen zu reagieren. Infolgedessen wird die Aufgabe, das Stromnetz zu betreiben anspruchsvoller. Insbesondere dort wo Reaktionszeiten erforderlich sind, welche die menschlichen Fähigkeiten übersteigen sind die zuvor genannten Veränderungen intrinsische Treiber hin zu einem höheren Automatisierungsgrad in der Netzbetriebs- und Systemführung. Aufkommende Echtzeitanwendungen in den Informations- und Betriebstechnologien und eine zunehmende Menge an hochauflösenden Sensordaten ermöglichen neue Ansätze für den Entwurf und den Betrieb von cyber-physikalischen Systemen. Ein vielversprechender Ansatz, der in jüngster Zeit in diesem Zusammenhang diskutiert wurde, ist das Konzept des so genannten Digitalen Zwillings. Da das Zusammenspiel von Informations- und Betriebstechnologien im Konzept des Digitalen Zwillings vereint wird, kann es als Grundlage für eine zukünftige Leitsystemarchitektur und neuartige Anwendungen der Leittechnik herangezogen werden. In der vorliegenden Arbeit wird ein Framework entwickelt, welches einen Digitalen Zwilling in einer neuartigen modularen Leitsystemarchitektur für die Aufgabe der Überwachung und Steuerung zukünftiger Energiesysteme zweckdienlich einsetzbar macht. In Ergänzung zu den bereits vorhandenen Funktionen moderner Netzführungssysteme unterstützt das Konzept die Abbildung der Netzdynamik auf Basis eines dynamischen Netzmodells. Um eine realitätsgetreue Abbildung der Netzdynamik zu ermöglichen, werden zeitsynchrone Raumzeigermessungen für die Modellvalidierung und Modellparameterschätzung herangezogen. Dies erhöht die Aussagekraft von Sicherheitsanalysen, sowie das Vertrauen in die Modelle mit denen operative Entscheidungen generiert werden. Durch die Bereitstellung eines validierten, konsistenten und wartbaren Datenmodells auf der Grundlage von physikalischen Gesetzmäßigkeiten und während des Betriebs gewonnener Prozessdaten, adressiert der vorgestellte Architekturentwurf mehrere Schlüsselan-forderungen an moderne Netzleitsysteme. So ermöglicht das Framework einen höheren Automatisierungsgrad des Stromnetzbetriebs sowie den Einsatz von Entscheidungs-unterstützungsfunktionen bis hin zu vertrauenswürdigen Assistenzsystemen auf Basis kognitiver Systeme. Diese Funktionen können die Betriebssicherheit erhöhen und stellen einen wichtigen Beitrag zur Umsetzung der digitalen Transformation des Stromnetzbetriebs, sowie zur erfolgreichen Umsetzung der Energiewende dar. Das vorgestellte Konzept wird auf der Grundlage numerischer Simulationen untersucht, wobei die grundsätzliche Machbarkeit anhand von Fallstudien nachgewiesen wird
    corecore