296 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Incident Analysis & Digital Forensics in SCADA and Industrial Control Systems

    Get PDF
    SCADA and industrial control systems have been traditionally isolated in physically protected environments. However, developments such as standardisation of data exchange protocols and increased use of IP, emerging wireless sensor networks and machine-to-machine communication mean that in the near future related threat vectors will require consideration too outside the scope of traditional SCADA security and incident response. In the light of the significance of SCADA for the resilience of critical infrastructures and the related targeted incidents against them (e.g. the development of stuxnet), cyber security and digital forensics emerge as priority areas. In this paper we focus on the latter, exploring the current capability of SCADA operators to analyse security incidents and develop situational awareness based on a robust digital evidence perspective. We look at the logging capabilities of a typical SCADA architecture and the analytical techniques and investigative tools that may help develop forensic readiness to the level of the current threat environment requirements. We also provide recommendations for data capture and retention

    Healthcare systems protection: All-in-one cybersecurity approach

    Get PDF
    Cyber risks are increasingly widespread as healthcare organizations play a defining role in society. Several studies have revealed an increase in cybersecurity threats in the industry, which should concern us all. When it comes to cybersecurity, the consequences can be felt throughout the organization, from the smallest processes to the overall ability of the organization to function. Typically, a cyberattack results in the disclosure of confidential information that undermines your competitive advantage and overall trust. Healthcare as a critical sector has, like many other sectors, a late bet on its transformation to cybersecurity across the board. This dissertation reinforces this need by presenting a value-added solution that helps strengthen the internal processes of healthcare units, enabling their primary mission of saving lives while ensuring the confidentiality and security of patient and institutional data. The solution is presented as a technological composite that translates into a methodology and innovative artifact for integration, monitoring, and security of critical medical infrastructures based on operational use cases. The approach that involves people, processes, and technology is based on a model that foresees the evaluation of potential assets for integration and monitoring, as well as leveraging the efficiency in responding to security incidents with the formal development of a process and mechanisms for alert and resolution of exposure and attack scenarios. On a technical level, the artifact relies on the integration of a medical image archiving system (PACS) into a SIEM to validate application logs that are linked to rules to map anomalous behaviors that trigger the incident management process on an IHS platform with custom-developed features. The choice for integration in the validation prototype of the PACS system is based not only on its importance in the orchestration of activities in the organization of a health institution, but also with the recent recommendations of various cybersecurity agencies and organizations for the importance of their protection in response to the latest trends in cyberattacks. In line with the results obtained, this approach will have full applicability in a real operational context, following the latest practices and technologies in the sector.Os riscos cibernéticos estão cada vez mais difundidos à medida que as organizações de cuidados de saúde desempenham um papel determinante na sociedade. Vários estudos revelaram um aumento das ameaças de cibersegurança no setor, o que nos deve preocupar a todos. Quando se trata de cibersegurança, as consequências podem ser sentidas em toda a organização, desde os mais pequenos processos até à sua capacidade global de funcionamento. Normalmente, um ciberataque resulta na divulgação de informações confidenciais que colocam em causa a sua vantagem competitiva e a confiança geral. O healthcare como setor crítico apresenta, como muitos outros setores, uma aposta tardia na sua transformação para a cibersegurança de forma generalizada. Esta dissertação reforça esta necessidade apresentando uma solução de valor acrescentado que ajuda a potenciar os processos internos das unidades de saúde possibilitando a sua missão principal de salvar vidas, aumentando a garantia de confidencialidade e segurança dos dados dos pacientes e instituições. A solução apresenta-se como um compósito tecnológico que se traduz numa metodologia e artefacto de inovação para integração, monitorização e segurança de infraestruturas médicas críticas baseado em use cases de operação. A abordagem que envolve pessoas, processos e tecnologia assenta num modelo que prevê a avaliação de potenciais ativos para integração e monitorização, como conta alavancar a eficiência na resposta a incidentes de segurança com o desenvolvimento formal de um processo e mecanismos para alerta e resolução de cenários de exposição e ataque. O artefacto, a nível tecnológico, conta com a integração do sistema de arquivo de imagem médica (PACS) num SIEM para validação de logs aplicacionais que estão associados a regras que mapeiam comportamentos anómalos que originam o despoletar do processo de gestão de incidentes numa plataforma IHS com funcionalidades desenvolvidas à medida. A escolha para integração no protótipo de validação do sistema PACS tem por base não só a sua importância na orquestração de atividades na orgânica duma instituição de saúde, mas também com as recentes recomendações de várias agências e organizações de cibersegurança para a importância da sua proteção em resposta às últimas tendências de ciberataques. Em linha com os resultados auscultados, esta abordagem terá total aplicabilidade em contexto real de operação, seguindo as mais recentes práticas e tecnologias no sector

    Laboratory Exercises to Accompany Industrial Control and Embedded Systems Security Curriculum Modules

    Get PDF
    The daily intrusion attempts and attacks on industrial control systems (ICS) and embedded systems (ES) underscore the criticality of the protection of our Critical Infrastructures (CIs). As recent as mid-July 2018, numerous reports on the infiltration of US utility control rooms by Russian hackers have been published. These successful infiltration and possible manipulation of the utility companies could easily translate to a devastating attack on our nation’s power grid and, consequently, our economy and well-being. Indeed, the need to secure the control and embedded systems which operate our CIs has never been so pronounced. In our attempt to address this critical need, we designed, developed and implemented ICS and ES security curriculum modules with pertinent hands-on laboratory exercises that can be freely adopted across the national setting. This paper describes in detail the modules and the accompanying exercises and proposes future enhancements and extensions to these pedagogical instruments. It highlights the interaction between control and embedded systems security with Presidential Policy Directive 8- the National Preparedness Plan (NPP), cyber risk management, incident handling. To establish the premise the laboratory exercises were developed. This paper outlines the description and content of the modules in the areas of (1) Industrial Control Systems (ICS) Security, (2) embedded systems (ES), and (3) guidelines, standards, and policy. The ICS security modules cover the predominant ICS protocols, ladder logic programming, Human Machine Interface (HMI), defensive techniques, ICS reconnaissance, vulnerability assessment, Intrusion detection, and penetration testing. The ES security modules include topics such as secure firmware programming and authentication mechanisms. In the guidelines, standards, and policy section, the topics covered by the modules include the NPP as it relates to CI protection, risk management, system protection and policy design, and managing operations and controls. An overview of the various hands-on exercises that accompany the course modules is also presented. Further, to evaluate the effectiveness of the pedagogical materials, an initial evaluation was conducted and the survey data were collected, analyzed, and presented. The paper concludes with future enhancements and directives on opportunities for module extensions and course adoption

    MOSTO: A toolkit to facilitate security auditing of ICS devices using Modbus/TCP

    Get PDF
    The integration of the Internet into industrial plants has connected Industrial Control Systems (ICS) worldwide, resulting in an increase in the number of attack surfaces and the exposure of software and devices not originally intended for networking. In addition, the heterogeneity and technical obsolescence of ICS architectures, legacy hardware, and outdated software pose significant challenges. Since these systems control essential infrastructure such as power grids, water treatment plants, and transportation networks, security is of the utmost importance. Unfortunately, current methods for evaluating the security of ICS are often ad-hoc and difficult to formalize into a systematic evaluation methodology with predictable results. In this paper, we propose a practical method supported by a concrete toolkit for performing penetration testing in an industrial setting. The primary focus is on the Modbus/TCP protocol as the field control protocol. Our approach relies on a toolkit, named MOSTO, which is licensed under GNU GPL and enables auditors to assess the security of existing industrial control settings without interfering with ICS workflows. Furthermore, we present a model-driven framework that combines formal methods, testing techniques, and simulation to (formally) test security properties in ICS networks

    Process-aware SCADA traffic monitoring:A local approach

    Get PDF

    ICT aspects of power systems and their security

    Get PDF
    This report provides a deep description of four complex Attack Scenarios that have as final goal to produce damage to the Electric Power Transmission System. The details about protocols used, vulnerabilities, devices etc. have been for obvious reasons hidden, and the ones presented have to be understood as mere (even if realistic) simplified versions of possible power systems.JRC.DG.G.6-Security technology assessmen
    corecore