3,124 research outputs found

    Green revolution 2.0: a sustainable energy path

    Full text link
    This repository item contains a single issue of Sustainable Development Insights, a series of short policy essays that began publishing in 2008 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. The series seeks to promote a broad interdisciplinary dialogue on how to accelerate sustainable development at all levels.The Green Revolution in agriculture greatly increased crop yields and averted mass starvation, but it also turned small farms into factory farms that concentrated production in a few locations and reduced the diversity of crops. In this paper, Professor Nalin Kulatilaka, Co-Director of BU’s Clean Energy & Environmental Sustainability Initiative, calls for a Green Energy Revolution that decentralizes energy supplies through a smart electricity network. He argues that such a revolution could provide for a diversity of energy sources located closer to users, which in turn could shift consumption patterns, reduce losses and decrease overall energy demand. He concludes that shifting to such a system “will adopt clean energy technologies while fostering new businesses, creating new jobs and ultimately empowering society to reach new heights in energy conservation and sustainability“

    The energy trilemma and the smart grid: implications beyond the United States

    Get PDF
    This article argues that smart grid technologies enable policy-makers and communities to successfully manage enduring energy policy concerns. It defines what ‘smart’ energy technologies, grids and policies mean, and then evaluates how the smart grid can enable policy-makers to respond to an emerging energy ‘trilemma’. Drawing on case studies from the United States, the article suggests that the automated communications enabled by smart grid technologies significantly benefit each dimension of the energy trilemma: economic, social and environmental. However, successful smart grid implementation requires smart communication beyond technology. Failure to engage with customers through targeted communication, or to adequately address customers' privacy concerns, risks alienating customers, threatening the value of the smart grid investment. This article concludes that, with smart communication, both technical and human, the smart grid is an important step towards a sustainable energy future for stakeholders well beyond the United States

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Cyber Insurance, Data Security, and Blockchain in the Wake of the Equifax Breach

    Get PDF

    Cyber-Physical Systems and Smart Cities in India: Opportunities, Issues, and Challenges

    Get PDF
    A large section of the population around the globe is migrating towards urban settlements. Nations are working toward smart city projects to provide a better wellbeing for the inhabitants. Cyber-physical systems are at the core of the smart city setups. They are used in almost every system component within a smart city ecosystem. This paper attempts to discuss the key components and issues involved in transforming conventional cities into smart cities with a special focus on cyber-physical systems in the Indian context. The paper primarily focuses on the infrastructural facilities and technical knowhow to smartly convert classical cities that were built haphazardly due to overpopulation and ill planning into smart cities. It further discusses cyber-physical systems as a core component of smart city setups, highlighting the related security issues. The opportunities for businesses, governments, inhabitants, and other stakeholders in a smart city ecosystem in the Indian context are also discussed. Finally, it highlights the issues and challenges concerning technical, financial, and other social and infrastructural bottlenecks in the way of realizing smart city concepts along with future research directions

    Digitalisation For Sustainable Infrastructure: The Road Ahead

    Get PDF
    In today’s tumultuous and fast-changing times, digitalisation and technology are game changers in a wide range of sectors and have a tremendous impact on infrastructure. Roads, railways, electricity grids, aviation, and maritime transport are deeply affected by the digital and technological transition, with gains in terms of competitiveness, cost-reduction, and safety. Digitalisation is also a key tool for fostering global commitment towards sustainability, but the race for digital infrastructure is also a geopolitical one. As the world’s largest economies are starting to adopt competitive strategies, a level playing field appears far from being agreed upon. Why are digitalisation and technology the core domains of global geopolitical competition? How are they changing the way infrastructure is built, operated, and maintained? To what extent will road, rail, air, and maritime transport change by virtue of digitalisation, artificial intelligence, and the Internet of Things? How to enhance cyber protection for critical infrastructure? What are the EU’s, US’ and China’s digital strategies?Publishe

    Promoting Increased Energy Efficiency in Smart Grids by Empowerment of Customers

    Get PDF
    • …
    corecore