829 research outputs found

    Branching strategies for mixed-integer programs containing logical constraints and decomposable structure

    Get PDF
    Decision-making optimisation problems can include discrete selections, e.g. selecting a route, arranging non-overlapping items or designing a network of items. Branch-and-bound (B&B), a widely applied divide-and-conquer framework, often solves such problems by considering a continuous approximation, e.g. replacing discrete variable domains by a continuous superset. Such approximations weaken the logical relations, e.g. for discrete variables corresponding to Boolean variables. Branching in B&B reintroduces logical relations by dividing the search space. This thesis studies designing B&B branching strategies, i.e. how to divide the search space, for optimisation problems that contain both a logical and a continuous structure. We begin our study with a large-scale, industrially-relevant optimisation problem where the objective consists of machine-learnt gradient-boosted trees (GBTs) and convex penalty functions. GBT functions contain if-then queries which introduces a logical structure to this problem. We propose decomposition-based rigorous bounding strategies and an iterative heuristic that can be embedded into a B&B algorithm. We approach branching with two strategies: a pseudocost initialisation and strong branching that target the structure of GBT and convex penalty aspects of the optimisation objective, respectively. Computational tests show that our B&B approach outperforms state-of-the-art solvers in deriving rigorous bounds on optimality. Our second project investigates how satisfiability modulo theories (SMT) derived unsatisfiable cores may be utilised in a B&B context. Unsatisfiable cores are subsets of constraints that explain an infeasible result. We study two-dimensional bin packing (2BP) and develop a B&B algorithm that branches on SMT unsatisfiable cores. We use the unsatisfiable cores to derive cuts that break 2BP symmetries. Computational results show that our B&B algorithm solves 20% more instances when compared with commercial solvers on the tested instances. Finally, we study convex generalized disjunctive programming (GDP), a framework that supports logical variables and operators. Convex GDP includes disjunctions of mathematical constraints, which motivate branching by partitioning the disjunctions. We investigate separation by branching, i.e. eliminating solutions that prevent rigorous bound improvement, and propose a greedy algorithm for building the branches. We propose three scoring methods for selecting the next branching disjunction. We also analyse how to leverage infeasibility to expedite the B&B search. Computational results show that our scoring methods can reduce the number of explored B&B nodes by an order of magnitude when compared with scoring methods proposed in literature. Our infeasibility analysis further reduces the number of explored nodes.Open Acces

    On the interplay of Mixed Integer Linear, Mixed Integer Nonlinear and Constraint Programming

    Get PDF
    In this thesis we study selected topics in the field of Mixed Integer Programming (MIP), in particular Mixed Integer Linear and Nonlinear Programming (MI(N)LP). We set a focus on the influences of Constraint Programming (CP). First, we analyze Mathematical Programming approaches to water network optimization, a set of challenging optimization problems frequently modeled as non-convex MINLPs. We give detailed descriptions of many variants and survey solution approaches from the literature. We are particularly interested in MILP approximations and present a respective computational study for water network design problems. We analyze this approach by algorithmic considerations and highlight the importance of certain convex substructures in these non-convex MINLPs. We further derive valid inequalities for water network design problems exploiting these substructures. Then, we treat Mathematical Programming problems with indicator constraints, recalling their most popular reformulation techniques in MIP, leading to either big-M constraints or disjunctive programming techniques. The latter give rise to reformulations in higher-dimensional spaces, and we review special cases from the literature that allow to describe the projection on the original space of variables explicitly. We theoretically extend the respective results in two directions and conduct computational experiments. We then present an algorithm for MILPs with indicator constraints that incorporates elements of CP into MIP techniques, including computational results for the JobShopScheduling problem. Finally, we introduce an extension of the class of MILPs so that linear expressions are allowed to have non-contiguous domains. Inspired by CP, this permits to model holes in the domains of variables as a special case. For such problems, we extend the theory of split cuts and show two ways of separating them, namely as intersection and lift-and-project cuts, and present computational results. We further experiment with an exact algorithm for such problems, applied to the Traveling Salesman Problem with multiple time windows

    On Minimal Valid Inequalities for Mixed Integer Conic Programs

    Full text link
    We study disjunctive conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe the convex hull. We study the properties of K-minimal inequalities by establishing algebraic necessary conditions for an inequality to be K-minimal. This characterization leads to a broader algebraically defined class of K- sublinear inequalities. We establish a close connection between K-sublinear inequalities and the support functions of sets with a particular structure. This connection results in practical ways of showing that a given inequality is K-sublinear and K-minimal. Our framework generalizes some of the results from the mixed integer linear case. It is well known that the minimal inequalities for mixed integer linear programs are generated by sublinear (positively homogeneous, subadditive and convex) functions that are also piecewise linear. This result is easily recovered by our analysis. Whenever possible we highlight the connections to the existing literature. However, our study unveils that such a cut generating function view treating the data associated with each individual variable independently is not possible in the case of general cones other than nonnegative orthant, even when the cone involved is the Lorentz cone

    Split Cuts From Sparse Disjunctions

    Get PDF
    Cutting planes are one of the major techniques used in solving Mixed-Integer Linear Programming (MIP) models. Various types of cuts have long been exploited by MIP solvers, leading to state-of-the-art performance in practice. Among them, the class of split cuts, which includes Gomory Mixed Integer (GMI) and Mixed Integer Rounding (MIR) cuts from tableaux, are arguably the most effective class of general cutting planes within a branch-and-cut framework. Sparsity, on the other hand, is a common characteristic of real-world MIP problems, and it is an important part of why the simplex method works so well inside branch-and-cut. A natural question, therefore, is to determine how sparsity can be incorporated into split cuts and how effective are split cuts that exploit sparsity. In this thesis, we evaluate the strength of split cuts that arise from sparse split disjunctions. In particular, we implement an approximate separation routine that separates only split cuts whose split disjunctions are sparse. We also present a straightforward way to exploit sparsity structure that is implicit in the MIP formulation. We run computational experiments and conclude that, one possibility to produce good split cuts is to try sparse disjunctions and exploit such structure

    Disjunctive cuts for cross-sections of the second-order cone

    Get PDF
    Abstract In this paper we study general two-term disjunctions on affine cross-sections of the secondorder cone. Under some mild assumptions, we derive a closed-form expression for a convex inequality that is valid for such a disjunctive set, and we show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and paraboloids and a wide class of two-term disjunctions-including split disjunctions-on hyperboloids. Our approach relies on the work of Kılınç-Karzan and Yıldız which considers general two-term disjunctions on the second-order cone

    Valid Inequalities and Reformulation Techniques for Mixed Integer Nonlinear Programming

    Get PDF
    One of the most important breakthroughs in the area of Mixed Integer Linear Programming (MILP) is the characterization of the convex hull of specially structured non-convex polyhedral sets in order to develop valid inequalities or cutting planes. Development of strong valid inequalities such as Split cuts, Gomory Mixed Integer (GMI) cuts, and Mixed Integer Rounding (MIR) cuts has resulted in highly effective branch-and-cut algorithms. While such cuts are known to be equivalent, each of their characterizations provides different advantages and insights. The study of cutting planes for Mixed Integer Nonlinear Programming (MINLP) is still much more limited than that for MILP, since characterizing cuts for MINLP requires the study of the convex hull of a non-convex and non-polyhedral set, which has proven to be significantly harder than the polyhedral case. However, there has been significant work on the computational use of cuts in MINLP. Furthermore, there has recently been a significant interest in extending the associated theoretical results from MILP to the realm of MINLP. This dissertation is focused on the development of new cuts and extended formulations for Mixed Integer Nonlinear Programs. We study the generalization of split, k-branch split, and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the difference between a convex set and an open set with a simple geometric structure. We introduce two techniques to give precise characterizations of such convex hulls and use them to construct split, k-branch split, and intersection cuts for several classes of non-polyhedral sets. We also study the relation between the introduced cuts and some known classes of cutting planes from MILP. Furthermore, we show how an aggregation technique can be easily extended to characterize the convex hull of sets defined by two quadratic or by a conic quadratic and a quadratic inequality. We also computationally evaluate the performance of the introduced cuts and extended formulations on two classes of MINLP problems

    Interior Point Cutting Plane Methods in Integer Programming

    Get PDF
    This thesis presents novel approaches that use interior point concepts in solving mixed integer programs. Particularly, we use the analytic center cutting plane method to improve three of the main components of the branch-and-bound algorithm: cutting planes, heuristics, and branching. First, we present an interior point branch-and-cut algorithm for structured integer programs based on Benders decomposition. We explore using Benders decomposition in a branch-and-cut framework where the Benders cuts are generated using the analytic center cutting plane method. The algorithm is tested on two classes of problems: the capacitated facility location problem and the multicommodity capacitated fixed charge network design problem. For the capacitated facility location problem, the proposed approach was on average 2.5 times faster than Benders-branch-and-cut and 11 times faster than classical Benders decomposition. For the multicommodity capacitated fixed charge network design problem, the proposed approach was 4 times faster than Benders-branch-and-cut while classical Benders decomposition failed to solve the majority of the tested instances. Second, we present a heuristic algorithm for mixed integer programs based on interior points. As integer solutions are typically in the interior, we use the analytic center cutting plane method to search for integer feasible points within the interior of the feasible set. The algorithm searches along two line segments that connect the weighted analytic center and two extreme points of the linear programming relaxation. Candidate points are rounded and tested for feasibility. Cuts aimed to improve the objective function and restore feasibility are then added to displace the weighted analytic center until a feasible integer solution is found. The algorithm is composed of three phases. In the first, points along the two line segments are rounded gradually to find integer feasible solutions. Then in an attempt to improve the quality of the solutions, the cut related to the bound constraint is updated and a new weighted analytic center is found. Upon failing to find a feasible integer solution, a second phase is started where cuts related to the violated feasibility constraints are added. As a last resort, the algorithm solves a minimum distance problem in a third phase. For all the tested instances, the algorithm finds good quality feasible solutions in the first two phases and the third phase is never called. Finally, we present a new approach to generate good general branching constraints based on the shape of the polyhedron. Our approach is based on approximating the polyhedron using an inscribed ellipsoid. We use Dikin's ellipsoid which we calculate using the analytic center. We propose to use the disjunction that has a minimum width on the ellipsoid. We use the fact that the width of the ellipsoid in a given direction has a closed form solution in order to formulate a quadratic problem whose optimal solution is a thin direction of the ellipsoid. While solving a quadratic problem at each node of the branch-and-bound tree is impractical, we use a local search heuristic for its solution. Computational testing conducted on hard integer problems from MIPLIB and CORAL showed that the proposed approach outperforms classical branching
    corecore