29 research outputs found

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    A Neutral Temporal Deontic STIT Logic

    Get PDF
    In this work we answer a long standing request for temporal embeddings of deontic STIT logics by introducing the multi-agent STIT logic TDS . The logic is based upon atemporal utilitarian STIT logic. Yet, the logic presented here will be neutral: instead of committing ourselves to utilitarian theories, we prove the logic TDS sound and complete with respect to relational frames not employing any utilitarian function. We demonstrate how these neutral frames can be transformed into utilitarian temporal frames, while preserving validity. Last, we discuss problems that arise from employing binary utility functions in a temporal setting

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Modal Action Logics for Reasoning about Reactive Systems

    Get PDF
    Meyer, J-.J.Ch. [Promotor]Riet, R.P. [Promotor]van de Wieringa, R. [Promotor

    Logics of Responsibility

    Get PDF
    The study of responsibility is a complicated matter. The term is used in different ways in different fields, and it is easy to engage in everyday discussions as to why someone should be considered responsible for something. Typically, the backdrop of these discussions involves social, legal, moral, or philosophical problems. A clear pattern in all these spheres is the intent of issuing standards for when---and to what extent---an agent should be held responsible for a state of affairs. This is where Logic lends a hand. The development of expressive logics---to reason about agents' decisions in situations with moral consequences---involves devising unequivocal representations of components of behavior that are highly relevant to systematic responsibility attribution and to systematic blame-or-praise assignment. To put it plainly, expressive syntactic-and-semantic frameworks help us analyze responsibility-related problems in a methodical way. This thesis builds a formal theory of responsibility. The main tool used toward this aim is modal logic and, more specifically, a class of modal logics of action known as stit theory. The underlying motivation is to provide theoretical foundations for using symbolic techniques in the construction of ethical AI. Thus, this work means a contribution to formal philosophy and symbolic AI. The thesis's methodology consists in the development of stit-theoretic models and languages to explore the interplay between the following components of responsibility: agency, knowledge, beliefs, intentions, and obligations. Said models are integrated into a framework that is rich enough to provide logic-based characterizations for three categories of responsibility: causal, informational, and motivational responsibility. The thesis is structured as follows. Chapter 2 discusses at length stit theory, a logic that formalizes the notion of agency in the world over an indeterministic conception of time known as branching time. The idea is that agents act by constraining possible futures to definite subsets. On the road to formalizing informational responsibility, Chapter 3 extends stit theory with traditional epistemic notions (knowledge and belief). Thus, the chapter formalizes important aspects of agents' reasoning in the choice and performance of actions. In a context of responsibility attribution and excusability, Chapter 4 extends epistemic stit theory with measures of optimality of actions that underlie obligations. In essence, this chapter formalizes the interplay between agents' knowledge and what they ought to do. On the road to formalizing motivational responsibility, Chapter 5 adds intentions and intentional actions to epistemic stit theory and reasons about the interplay between knowledge and intentionality. Finally, Chapter 6 merges the previous chapters' formalisms into a rich logic that is able to express and model different modes of the aforementioned categories of responsibility. Technically, the most important contributions of this thesis lie in the axiomatizations of all the introduced logics. In particular, the proofs of soundness & completeness results involve long, step-by-step procedures that make use of novel techniques
    corecore