262 research outputs found

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    On the proof theory of infinitary modal logic

    Get PDF
    The article deals with infinitary modal logic. We first discuss the difficulties related to the development of a satisfactory proof theory and then we show how to overcome these problems by introducing a labelled sequent calculus which is sound and complete with respect to Kripke semantics. We establish the structural properties of the system, namely admissibility of the structural rules and of the cut rule. Finally, we show how to embed common knowledge in the infinitary calculus and we discuss first-order extensions of infinitary modal logic

    Through and beyond classicality: analyticity, embeddings, infinity

    Get PDF
    Structural proof theory deals with formal representation of proofs and with the investigation of their properties. This thesis provides an analysis of various non-classical logical systems using proof-theoretic methods. The approach consists in the formulation of analytic calculi for these logics which are then used in order to study their metalogical properties. A specific attention is devoted to studying the connections between classical and non-classical reasoning. In particular, the use of analytic sequent calculi allows one to regain desirable structural properties which are lost in non-classical contexts. In this sense, proof-theoretic versions of embeddings between non-classical logics - both finitary and infinitary - prove to be a useful tool insofar as they build a bridge between different logical regions

    Phase Semantics for Linear Logic with Least and Greatest Fixed Points

    Get PDF
    The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide range of applications and deep connections with several denotational semantics. In phase semantics, one is concerned about the provability of formulas rather than the contents of their proofs (or refutations). Linear logic equipped with the least and greatest fixpoint operators (?MALL) has been an active field of research for the past one and a half decades. Various proof systems are known viz. finitary and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL) to ?MALL with explicit (co)induction (i.e. ?MALL^{ind}). We introduce a Tait-style system for ?MALL called ?MALL_? where proofs are wellfounded but potentially infinitely branching. We study its phase semantics and prove that it does not have the finite model property

    A Linear Logic Based Approach to Timed Petri Nets

    Get PDF
    1.1 Relationship between Petri net and linear logic Petri nets were first introduced by Petri in his seminal Ph.D. thesis, and both the theory and the applications of his model have flourished in concurrency theory (Reisig & Rozenberg, 1998a; Reisig & Rozenberg, 1998b)

    Deep Inference and Symmetry in Classical Proofs

    Get PDF
    In this thesis we see deductive systems for classical propositional and predicate logic which use deep inference, i.e. inference rules apply arbitrarily deep inside formulas, and a certain symmetry, which provides an involution on derivations. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they enjoy various new interesting properties. Not only the identity axiom, but also cut, weakening and even contraction are reducible to atomic form. This leads to inference rules that are local, meaning that the effort of applying them is bounded, and finitary, meaning that, given a conclusion, there is only a finite number of premises to choose from. The systems also enjoy new normal forms for derivations and, in the propositional case, a cut elimination procedure that is drastically simpler than the ones for sequent systems

    Temporal non-commutative logic: Expressing time, resource, order and hierarchy

    Get PDF
    A first-order temporal non-commutative logic TN[l], which has no structural rules and has some l-bounded linear-time temporal operators, is introduced as a Gentzen-type sequent calculus. The logic TN[l] allows us to provide not only time-dependent, resource-sensitive, ordered, but also hierarchical reasoning. Decidability, cut-elimination and completeness (w.r.t. phase semantics) theorems are shown for TN[l]. An advantage of TN[l] is its decidability, because the standard first-order linear-time temporal logic is undecidable. A correspondence theorem between TN[l] and a resource indexed non-commutative logic RN[l] is also shown. This theorem is intended to state that “time” is regarded as a “resource”

    Tool support for reasoning in display calculi

    Get PDF
    We present a tool for reasoning in and about propositional sequent calculi. One aim is to support reasoning in calculi that contain a hundred rules or more, so that even relatively small pen and paper derivations become tedious and error prone. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. Second, we provide embeddings of the calculus in the theorem prover Isabelle for formalising proofs about D.EAK. As a case study we show that the solution of the muddy children puzzle is derivable for any number of muddy children. Third, there is a set of meta-tools, that allows us to adapt the tool for a wide variety of user defined calculi
    • …
    corecore