101,468 research outputs found

    A new notion of angle between three points in a metric space

    Full text link
    We give a new notion of angle in general metric spaces; more precisely, given a triple a points p,x,qp,x,q in a metric space (X,d)(X,d), we introduce the notion of angle cone pxq{\angle_{pxq}} as being an interval pxq:=[pxq,pxq+]{\angle_{pxq}}:=[\angle^-_{pxq},\angle^+_{pxq}], where the quantities pxq±\angle^\pm_{pxq} are defined in terms of the distance functions from pp and qq via a duality construction of differentials and gradients holding for locally Lipschitz functions on a general metric space. Our definition in the Euclidean plane gives the standard angle between three points and in a Riemannian manifold coincides with the usual angle between the geodesics, if xx is not in the cut locus of pp or qq. We show that in general the angle cone is not single valued (even in case the metric space is a smooth Riemannian manifold, if xx is in the cut locus of pp or qq), but if we endow the metric space with a positive Borel measure mm obtaining the metric measure space (X,d,m)(X,d,m) then under quite general assumptions (which include many fundamental examples as Riemannian manifolds, finite dimensional Alexandrov spaces with curvature bounded from below, Gromov-Hausdorff limits of Riemannian manifolds with Ricci curvature bounded from below, and normed spaces with strictly convex norm), fixed p,qXp,q \in X, the angle cone at xx is single valued for mm-a.e. xXx \in X. We prove some basic properties of the angle cone (such as the invariance under homotheties of the space) and we analyze in detail the case (X,d,m)(X,d,m) is a measured-Gromov-Hausdorff limit of a sequence of Riemannian manifolds with Ricci curvature bounded from below, showing the consistency of our definition with a recent construction of Honda.Comment: 19 page

    Spectral geometry with a cut-off: topological and metric aspects

    Full text link
    Inspired by regularization in quantum field theory, we study topological and metric properties of spaces in which a cut-off is introduced. We work in the framework of noncommutative geometry, and focus on Connes distance associated to a spectral triple (A, H, D). A high momentum (short distance) cut-off is implemented by the action of a projection P on the Dirac operator D and/or on the algebra A. This action induces two new distances. We individuate conditions making them equivalent to the original distance. We also study the Gromov-Hausdorff limit of the set of truncated states, first for compact quantum metric spaces in the sense of Rieffel, then for arbitrary spectral triples. To this aim, we introduce a notion of "state with finite moment of order 1" for noncommutative algebras. We then focus on the commutative case, and show that the cut-off induces a minimal length between points, which is infinite if P has finite rank. When P is a spectral projection of DD, we work out an approximation of points by non-pure states that are at finite distance from each other. On the circle, such approximations are given by Fejer probability distributions. Finally we apply the results to Moyal plane and the fuzzy sphere, obtained as Berezin quantization of the plane and the sphere respectively.Comment: Reference added. Minor corrections. Published version. 38 pages, 2 figures. Journal of Geometry and Physics 201

    Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity

    Full text link
    We study the geometry of nonrelatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with nonrelatively hyperbolic peripheral subgroups is a quasi-isometry invariant. As an application, Artin groups are relatively hyperbolic if and only if freely decomposable. We also introduce a new quasi-isometry invariant of metric spaces called metrically thick, which is sufficient for a metric space to be nonhyperbolic relative to any nontrivial collection of subsets. Thick finitely generated groups include: mapping class groups of most surfaces; outer automorphism groups of most free groups; certain Artin groups; and others. Nonuniform lattices in higher rank semisimple Lie groups are thick and hence nonrelatively hyperbolic, in contrast with rank one which provided the motivating examples of relatively hyperbolic groups. Mapping class groups are the first examples of nonrelatively hyperbolic groups having cut points in any asymptotic cone, resolving several questions of Drutu and Sapir about the structure of relatively hyperbolic groups. Outside of group theory, Teichmuller spaces for surfaces of sufficiently large complexity are thick with respect to the Weil-Peterson metric, in contrast with Brock--Farb's hyperbolicity result in low complexity.Comment: To appear in Mathematische Annale

    Center-based Clustering under Perturbation Stability

    Full text link
    Clustering under most popular objective functions is NP-hard, even to approximate well, and so unlikely to be efficiently solvable in the worst case. Recently, Bilu and Linial \cite{Bilu09} suggested an approach aimed at bypassing this computational barrier by using properties of instances one might hope to hold in practice. In particular, they argue that instances in practice should be stable to small perturbations in the metric space and give an efficient algorithm for clustering instances of the Max-Cut problem that are stable to perturbations of size O(n1/2)O(n^{1/2}). In addition, they conjecture that instances stable to as little as O(1) perturbations should be solvable in polynomial time. In this paper we prove that this conjecture is true for any center-based clustering objective (such as kk-median, kk-means, and kk-center). Specifically, we show we can efficiently find the optimal clustering assuming only stability to factor-3 perturbations of the underlying metric in spaces without Steiner points, and stability to factor 2+32+\sqrt{3} perturbations for general metrics. In particular, we show for such instances that the popular Single-Linkage algorithm combined with dynamic programming will find the optimal clustering. We also present NP-hardness results under a weaker but related condition

    Finite Volume Spaces and Sparsification

    Full text link
    We introduce and study finite dd-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define 1\ell_1-volumes and show that they contain Euclidean volumes and hypertree volumes. We show that they can approximate any dd-volume with O(nd)O(n^d) multiplicative distortion. On the other hand, contrary to Bourgain's theorem for d=1d=1, there exists a 22-volume that on nn vertices that cannot be approximated by any 1\ell_1-volume with distortion smaller than Ω~(n1/5)\tilde{\Omega}(n^{1/5}). We further address the problem of 1\ell_1-dimension reduction in the context of 1\ell_1 volumes, and show that this phenomenon does occur, although not to the same striking degree as it does for Euclidean metrics and volumes. In particular, we show that any 1\ell_1 metric on nn points can be (1+ϵ)(1+ \epsilon)-approximated by a sum of O(n/ϵ2)O(n/\epsilon^2) cut metrics, improving over the best previously known bound of O(nlogn)O(n \log n) due to Schechtman. In order to deal with dimension reduction, we extend the techniques and ideas introduced by Karger and Bencz{\'u}r, and Spielman et al.~in the context of graph Sparsification, and develop general methods with a wide range of applications.Comment: previous revision was the wrong file: the new revision: changed (extended considerably) the treatment of finite volumes (see revised abstract). Inserted new applications for the sparsification technique
    corecore