75 research outputs found

    Design automation algorithms for advanced lithography

    Get PDF
    In circuit manufacturing, as the technology nodes keep shrinking, conventional 193 nm immersion lithography (193i) has reached its printability limit. To continue the scaling with Moore's law, different kinds of advanced lithography have been proposed, such as multiple patterning lithography (MPL), extreme ultraviolet (EUV), electron beam lithography (EBL) and directed self-assembly (DSA). While these new technologies create enormous opportunities, they also pose great design challenges due to their unique process characteristics and stringent constraints. In order to smoothly adopt these advanced lithography technologies in integrated circuit (IC) fabrication, effective electronic design automation (EDA) algorithms must be designed and integrated into computer-aided design (CAD) tools to address the underlying design constraints and help the circuit designer to better facilitate the lithography process. In this thesis, we focus on algorithmic design and efficient implementation of EDA algorithm for advanced lithography, including directed self-assembly (DSA) and self-aligned double patterning (SADP), to conquer the physical challenges and improve the manufacturing yield. The first advanced lithography technology we explore is self-aligned double patterning (SADP). SADP has the significant advantage over traditional litho-etch-litho-etch (LELE) double patterning in its ability to eliminate overlay, making it a preferable DPL choice for the 14 nm technology node. As in any DPL technology, layout decomposition is the key problem. While the layout decomposition problem for LELE DPL has been well studied in the literature, only a few attempts have been made for the SADP layout decomposition problem. This thesis studies the SADP decomposition problem in different scenarios. SADP has been successfully deployed in 1D patterns and has several applications; however, applying it to 2D patterns turns out to be much more difficult. All previous exact algorithms were based on computationally expensive methods such as SAT or ILP. Other previous algorithms were heuristics without a guarantee that an overlay-free solution can be found even if one exists. The SADP decomposition problem on general 2D layout is proven to be NP-complete. However, we show that if we restrict the overlay, the problem is polynomial-time solvable, and present an exact algorithm to determine if a given 2D layout has a no-overlay SADP decomposition. When designing the layout decomposition algorithms, it is usually useful to take the layout structure into consideration. As most of the current IC layouts adopt a row-based standard cell design style, we can take advantage of its characteristics and design more efficient algorithms compared to the algorithms for general 2D patterns. In particular, the fixed widths of standard cells and power tracks on top and bottom of cells suggest that improvements can be made over the algorithms for general decomposition problem. We present a shortest-path based polynomial time SADP decomposition algorithm for row-based standard cell layout that efficiently finds decompositions with minimum overlay violations. Our proposed algorithm takes advantage of the fixed width of the cells and the alternating power tracks between the rows to limit the possible decompositions and thus achieve high efficiency. The next advanced lithography technology we discuss in the thesis is directed self-assembly (DSA). Block copolymer directed self-assembly (DSA) is a promising technique for patterning contact holes and vias in 7 nm technology nodes. To pattern contacts/vias with DSA, guiding templates are usually printed first with conventional lithography (193i) that has a coarser pitch resolution. Contact holes are then patterned with DSA process. The guiding templates play the role of defining the DSA patterns, which have a finer resolution than the templates. As a result, different patterns can be obtained through controlling the templates. It is shown that DSA lithography is very promising in patterning contacts/vias in 7 nm technology node. However, to utilize DSA for full-chip manufacturing, EDA for DSA must be fully explored because EDA is the key enabler for manufacturing, and the EDA research for DSA is still lagging behind. To pattern the contact layer with DSA, we must ensure that all the contacts in the layout require only feasible DSA templates. Nevertheless, the original layout may not be designed in a DSA-friendly way. However, even with an optimized library, infeasible templates may be introduced after the physical design phase. We propose a simulated-annealing (SA) based scheme to perform full-chip level contact layer optimization. According to the experimental results, the DSA conflicts in the contact layer are reduced by close to 90% on average after applying the proposed optimization algorithm. It is a current trend that industry is transiting from the random 2D designs to highly regular 1D gridded designs for sub-20 nm nodes and fabricating circuit designs with print-cut technology. In this process, the randomly distributed cuts may be too dense to be printed by single patterning lithography. DSA has proven its success in contact hole patterning, and can be easily expanded to cut printing for 1D gridded designs. Nevertheless, the irregular distribution of cuts still presents a great challenge for DSA, as the self-assembly process usually forms regular patterns. As a result, the cut layer must be optimized for the DSA process. To address the above problem, we propose an efficient algorithm to optimize cut layers without hurting the original circuit logic. Our work utilizes a technique called `line-end extension' to move the cuts and extend the functional wires without changing the original functionality of the circuit. Consequently, the cuts can be redistributed and grouped into valid DSA templates. Multiple patterning lithography has been widely adopted for today's circuit manufacturing. However, increasing the number of masks will make the manufacturing process more expensive. By incorporating DSA into the multiple patterning process, it is possible to reduce the number of masks and achieve a cost-effective solution. We study the decomposition problem for the contact layer in row-based standard cell layout with DSA-MP complementary lithography. We explore several heuristic-based approaches, and propose an algorithm that decomposes a standard cell row optimally in polynomial-time. Our experiments show that our algorithm is guaranteed to find a minimum cost solution if one exists, while the heuristic cannot or only finds a sub-optimal solution. Our results show that the DSA-MP complementary approach is very promising for the future advanced nodes. As in any lithography technique, the process variation control and proximity correction are the most important issues. As the DSA templates are patterned by conventional lithography, the patterned templates are prone to deviate from mask shapes due to process variations, which will ultimately affect the contacts after the DSA process even for the same type of template. Therefore, in order to enable the DSA technology in contact/via layer printing, it is extremely important to accurately model and detect hotspots, as well as estimate the contact pitch and locations during the verification phase. We propose a machine learning based design automation framework for DSA verification. A novel DSA model and a set of features are included. We implemented the proposed ML-based flow and performed extensive experiments on comparing the performances of learning algorithms and features. The experimental results show that our approach is much more efficient than the traditional approach, and can produce highly accurate results

    Primary objects: developing a new type of furniture for the early elementary classroom

    Get PDF
    The traditional North American elementary classroom is dominated by traditional passive furniture. With the continual use of the traditional typologies of desks and chairs, the classroom furniture fails to challenge the student's development and engage the imagination of the users. As research shows that children learn most through movement, emotions, and exploration, the passive furniture hinders a well-rounded learning experience. In this study, the approach for designing new furniture that fosters a sense of creativity, independence, and active learning is not only guided by the researcher's experiences, but also involves insight from elementary students and teachers. This thesis investigation used a participatory approach to enable the examination of the current activities and interactions occurring within the first and second grade classroom. Using the characteristics of middle childhood, the third teacher theory, and affordance, the researcher developed a line of furniture for active learning that enables the students to shape their learning environment and experience. The resulting classroom furniture provides for intimate interactions, physical activity, social development, and personal customization

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Get PDF
    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center

    Renewable Energy in Marine Environment

    Get PDF
    The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience

    BUILT UTOPIAS IN THE COUNTRYSIDE: THE RURAL AND THE MODERN IN FRANCO’S SPAIN

    Get PDF
    Anchored by Hüppauf and Umbach’s notion of Vernacular Modernism and focusing on architecture and urbanism during Franco’s dictatorship from 1939 to 1975, this thesis challenges the hegemonic and Northern-oriented narrative of urban modernity. It develops arguments about the reciprocal influences between the urban and the rural that characterize Spanish modernity, and analyzes the intense architectural and urban debates that resulted from the crisis of 1898, as they focused on the importance of vernacular architecture, in particular the Mediterranean one, in the definition of an “other modernity.†This search culminated before 1936 with the “Lessons of Ibiza,†and was revived at the beginning of the 1950s, when architects like Coderch, Fisac, Bohigas, and the cosigners of the Manifiesto de la Alhambra brought back the discourse of the modern vernacular as a politically acceptable form of Spanish modernity, and extended its field of application from the individual house and the rural architecture to the urban conditions, including social and middle-class housing. The core of the dissertation addresses the 20th century phenomenon of the modern agricultural village as built emergence of a rural paradigm of modernity in parallel or alternative to the metropolitan condition. In doing so, it interrogates the question of tradition, modernity, and national identity in urban form between the 1920s and the 1960s. Regarding Spain, it studies the actuation of the two Institutes that were created to implement the Francoist policy of post-war reconstruction and interior colonization—the Dirección General de Regiones Devastadas, and the Instituto Nacional de Colonización. It examines the ideological, political, urban, and architectural principles of Franco’s reconstruction of the devastated countryside, as well as his grand “hydro-social dream†of modernization of the countryside. It analyzes their role in national-building policies in liaison with the early 20th-century Regenerationist Movement of Joaquín Costa, the first works of hydraulic infrastructure under Primo de Rivera, and the aborted agrarian reform of the Second Republic. Inspired by the Zionist colonization of Palestine and Mussolini’s reclaiming of the Pontine Marshes, Falangist planners developed a national strategy of “interior colonization†that, along with the reclamation and irrigation of extensive and unproductive river basins, entailed the construction of three hundred modern villages or pueblos between 1940 and 1971. Each village was designed as a “rural utopia,†centered on a plaza mayor and the church, which embodied the political ideal of civil life under the nationalcatholic regime and evolved from a traditional town design in the 1940s to an increasingly abstract and modern vision, anchored on the concept of the “Heart of the City†after 1952. The program was an important catalyst for the development of Spanish modern architecture after the first period of autarchy and an effective incubator for a new generation of architects, including Alejandro de la Sota, José Luis Fernández del Amo, and others. Between tradition and modernity, these architects reinvented the pueblos as platforms of urban and architectonic experimentation in their search for a depurated rural vernacular and a modern urban form. Whereas abstraction was the primary design tool that Fernández del Amo deployed to the limits of the continuity of urban form, de la Sota reversed the fundamental reference to the countryside that characterizes Spanish surrealism to bring surrealism within the process of rural modernization in Franco’s Spain
    corecore