27 research outputs found

    A Dynamical System-based Approach to Modeling Stable Robot Control Policies via Imitation Learning

    Get PDF
    Despite tremendous advances in robotics, we are still amazed by the proficiency with which humans perform movements. Even new waves of robotic systems still rely heavily on hardcoded motions with a limited ability to react autonomously and robustly to a dynamically changing environment. This thesis focuses on providing possible mechanisms to push the level of adaptivity, reactivity, and robustness of robotic systems closer to human movements. Specifically, it aims at developing these mechanisms for a subclass of robot motions called “reaching movements”, i.e. movements in space stopping at a given target (also referred to as episodic motions, discrete motions, or point-to-point motions). These reaching movements can then be used as building blocks to form more advanced robot tasks. To achieve a high level of proficiency as described above, this thesis particularly seeks to derive control policies that: 1) resemble human motions, 2) guarantee the accomplishment of the task (if the target is reachable), and 3) can instantly adapt to changes in dynamic environments. To avoid manually hardcoding robot motions, this thesis exploits the power of machine learning techniques and takes an Imitation Learning (IL) approach to build a generic model of robot movements from a few examples provided by an expert. To achieve the required level of robustness and reactivity, the perspective adopted in this thesis is that a reaching movement can be described with a nonlinear Dynamical System (DS). When building an estimate of DS from demonstrations, there are two key problems that need to be addressed: the problem of generating motions that resemble at best the demonstrations (the “how-to-imitate” problem), and most importantly, the problem of ensuring the accomplishment of the task, i.e. reaching the target (the “stability” problem). Although there are numerous well-established approaches in robotics that could answer each of these problems separately, tackling both problems simultaneously is challenging and has not been extensively studied yet. This thesis first tackles the problem mentioned above by introducing an iterative method to build an estimate of autonomous nonlinear DS that are formulated as a mixture of Gaussian functions. This method minimizes the number of Gaussian functions required for achieving both local asymptotic stability at the target and accuracy in following demonstrations. We then extend this formulation and provide sufficient conditions to ensure global asymptotic stability of autonomous DS at the target. In this approach, an estimation of the underlying DS is built by solving a constraint optimization problem, where the metric of accuracy and the stability conditions are formulated as the optimization objective and constraints, respectively. In addition to ensuring convergence of all motions to the target within the local or global stability regions, these approaches offer an inherent adaptability and robustness to changes in dynamic environments. This thesis further extends the previous approaches and ensures global asymptotic stability of DS-based motions at the target independently of the choice of the regression technique. Therefore, it offers the possibility to choose the most appropriate regression technique based on the requirements of the task at hand without compromising DS stability. This approach also provides the possibility of online learning and using a combination of two or more regression methods to model more advanced robot tasks, and can be applied to estimate motions that are represented with both autonomous and non-autonomous DS. Additionally, this thesis suggests a reformulation to modeling robot motions that allows encoding of a considerably wider set of tasks ranging from reaching movements to agile robot movements that require hitting a given target with a specific speed and direction. This approach is validated in the context of playing the challenging task of minigolf. Finally, the last part of this thesis proposes a DS-based approach to realtime obstacle avoidance. The presented approach provides a modulation that instantly modifies the robot’s motion to avoid collision with multiple static and moving convex obstacles. This approach can be applied on all the techniques described above without affecting their adaptability, swiftness, or robustness. The techniques that are developed in this thesis have been validated in simulation and on different robotic platforms including the humanoid robots HOAP-3 and iCub, and the robot arms KATANA, WAM, and LWR. Throughout this thesis we show that the DS-based approach to modeling robot discrete movements can offer a high level of adaptability, reactivity, and robustness almost effortlessly when interacting with dynamic environments

    Preface

    Get PDF

    Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Seventh Italian Conference on Computational Linguistics (CLiC-it 2020). This edition of the conference is held in Bologna and organised by the University of Bologna. The CLiC-it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after six years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    Low-Resource Unsupervised NMT:Diagnosing the Problem and Providing a Linguistically Motivated Solution

    Get PDF
    Unsupervised Machine Translation hasbeen advancing our ability to translatewithout parallel data, but state-of-the-artmethods assume an abundance of mono-lingual data. This paper investigates thescenario where monolingual data is lim-ited as well, finding that current unsuper-vised methods suffer in performance un-der this stricter setting. We find that theperformance loss originates from the poorquality of the pretrained monolingual em-beddings, and we propose using linguis-tic information in the embedding train-ing scheme. To support this, we look attwo linguistic features that may help im-prove alignment quality: dependency in-formation and sub-word information. Us-ing dependency-based embeddings resultsin a complementary word representationwhich offers a boost in performance ofaround 1.5 BLEU points compared to stan-dardWORD2VECwhen monolingual datais limited to 1 million sentences per lan-guage. We also find that the inclusion ofsub-word information is crucial to improv-ing the quality of the embedding

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore