487 research outputs found

    DEVELOPMENT OF AN ELECTRONICALLY-CONTROLLED, MULTIDOSE, NASAL, DRUG-DELIVERY DEVICE

    Get PDF
    In recent years, the nasal route has received a great deal of attention as convenient and reliable method of systemic administration of drugs, due to its benefits of reduced pain, precise drug delivery and eliminated risk of intravenous needles. The pharmaceutical industries are facing a competitive challenge introducing novel devices for the nasal drug delivery, which is better than commercially available, unit dose and squeeze bottle sprayers. The purpose of this study is to develop such a device for the nasal drug delivery that would satisfy the needs of the patients, physicians and pharmacist. An electronically controlled multi-dose nasal drug delivery device is developed as a result of the study. The parts of the device are designed to satisfy customer needs. The developed parts are redesigned for manufacture and assembly, considering the DFMA principles. The conceptual design was tested for its functionality by developing working prototypes of using rapid prototyping techniques. Suitable materials and manufacturing processes for parts of the device are determined, and the manufacturing and assembly cost of the device is estimated to justify affordability

    Contributions to the cornerstones of interaction in visualization: strengthening the interaction of visualization

    Get PDF
    Visualization has become an accepted means for data exploration and analysis. Although interaction is an important component of visualization approaches, current visualization research pays less attention to interaction than to aspects of the graphical representation. Therefore, the goal of this work is to strengthen the interaction side of visualization. To this end, we establish a unified view on interaction in visualization. This unified view covers four cornerstones: the data, the tasks, the technology, and the human.Visualisierung hat sich zu einem unverzichtbaren Werkzeug für die Exploration und Analyse von Daten entwickelt. Obwohl Interaktion ein wichtiger Bestandteil solcher Werkzeuge ist, wird der Interaktion in der aktuellen Visualisierungsforschung weniger Aufmerksamkeit gewidmet als Aspekten der graphischen Repräsentation. Daher ist es das Ziel dieser Arbeit, die Interaktion im Bereich der Visualisierung zu stärken. Hierzu wird eine einheitliche Sicht auf Interaktion in der Visualisierung entwickelt

    Intelligent conceptual mould layout design system (ICMLDS) : innovation report

    Get PDF
    Family Mould Cavity Runner Layout Design (FMCRLD) is the most demanding and critical task in the early Conceptual Mould Layout Design (CMLD) phase. Traditional experience-dependent manual FCMRLD workflow results in long design lead time, non-optimum designs and costs of errors. However, no previous research, existing commercial software packages or patented technologies can support FMCRLD automation and optimisation. The nature of FMCRLD is non-repetitive and generative. The complexity of FMCRLD optimisation involves solving a complex two-level combinatorial layout design optimisation problem. This research first developed the Intelligent Conceptual Mould Layout Design System (ICMLDS) prototype based on the innovative nature-inspired evolutionary FCMRLD approach for FMCRLD automation and optimisation using Genetic Algorithm (GA) and Shape Grammar (SG). The ICMLDS prototype has been proven to be a powerful intelligent design tool as well as an interactive design-training tool that can encourage and accelerate mould designers’ design alternative exploration, exploitation and optimisation for better design in less time. This previously unavailable capability enables the supporting company not only to innovate the existing traditional mould making business but also to explore new business opportunities in the high-value low-volume market (such as telecommunication, consumer electronic and medical devices) of high precision injection moulding parts. On the other hand, the innovation of this research also provides a deeper insight into the art of evolutionary design and expands research opportunities in the evolutionary design approach into a wide variety of new application areas including hot runner layout design, ejector layout design, cooling layout design and architectural space layout design

    Automatically Generating Personalized User Interfaces with SUPPLE

    Get PDF
    Today's computer–human interfaces are typically designed with the assumption that they are going to be used by an able-bodied person, who is using a typical set of input and output devices, who has typical perceptual and cognitive abilities, and who is sitting in a stable, warm environment. Any deviation from these assumptions may drastically hamper the person's effectiveness—not because of any inherent barrier to interaction, but because of a mismatch between the person's effective abilities and the assumptions underlying the interface design. We argue that automatic personalized interface generation is a feasible and scalable solution to this challenge. We present our Supple system, which can automatically generate interfaces adapted to a person's devices, tasks, preferences, and abilities. In this paper we formally define interface generation as an optimization problem and demonstrate that, despite a large solution space (of up to 1017 possible interfaces), the problem is computationally feasible. In fact, for a particular class of cost functions, Supple produces exact solutions in under a second for most cases, and in a little over a minute in the worst case encountered, thus enabling run-time generation of user interfaces. We further show how several different design criteria can be expressed in the cost function, enabling different kinds of personalization. We also demonstrate how this approach enables extensive user- and system-initiated run-time adaptations to the interfaces after they have been generated. Supple is not intended to replace human user interface designers—instead, it offers alternative user interfaces for those people whose devices, tasks, preferences, and abilities are not sufficiently addressed by the hand-crafted designs. Indeed, the results of our study show that, compared to manufacturers' defaults, interfaces automatically generated by Supple significantly improve speed, accuracy and satisfaction of people with motor impairments.Engineering and Applied Science

    A computational model of human trust in supervisory control of robotic swarms

    Get PDF
    Trust is an important factor in the interaction between humans and automation to mediate the reliance action of human operators. In this work, we study human factors in supervisory control of robotic swarms and develop a computational model of human trust on swarm systems with varied levels of autonomy (LOA). We extend the classic trust theory by adding an intermediate feedback loop to the trust model, which formulates the human trust evolution as a combination of both open-loop trust anticipation and closed-loop trust feedback. A Kalman filter model is implemented to apply the above structure. We conducted a human experiment to collect user data of supervisory control of robotic swarms. Participants were requested to direct the swarm in a simulated environment to finish a foraging task using control systems with varied LOA. We implement three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual and autonomous LOA, swarms are controlled by a human or a search algorithm exclusively, while in the MI LOA, the human operator and algorithm collaboratively control the swarm. We train a personalized model for each participant and evaluate the model performance on a separate data set. Evaluation results show that our Kalman model outperforms existing models including inverse reinforcement learning and dynamic Bayesian network methods. In summary, the proposed work is novel in the following aspects: 1) This Kalman estimator is the first to model the complete trust evolution process with both closed-loop feedback and open-loop trust anticipation. 2) The proposed model analyzes time-series data to reveal the influence of events that occur during the course of an interaction; namely, a user’s intervention and report of levels of trust. 3) The proposed model considers the operator’s cognitive time lag between perceiving and processing the system display. 4) The proposed model uses the Kalman filter structure to fuse information from different sources to estimate a human operator's mental states. 5) The proposed model provides a personalized model for each individual

    An Exploration of Multi-touch Interaction Techniques

    Get PDF
    Research in multi-touch interaction has typically been focused on direct spatial manipulation; techniques have been created to result in the most intuitive mapping between the movement of the hand and the resultant change in the virtual object. As we attempt to design for more complex operations, the effectiveness of spatial manipulation as a metaphor becomes weak. We introduce two new platforms for multi-touch computing: a gesture recognition system, and a new interaction technique. I present Multi-Tap Sliders, a new interaction technique for operation in what we call non-spatial parametric spaces. Such spaces do not have an obvious literal spatial representation, (Eg.: exposure, brightness, contrast and saturation for image editing). The multi-tap sliders encourage the user to keep her visual focus on the tar- get, instead of requiring her to look back at the interface. My research emphasizes ergonomics, clear visual design, and fluid transition between modes of operation. Through a series of iterations, I develop a new technique for quickly selecting and adjusting multiple numerical parameters. Evaluations of multi-tap sliders show improvements over traditional sliders. To facilitate further research on multi-touch gestural interaction, I developed mGestr: a training and recognition system using hidden Markov models for designing a multi-touch gesture set. Our evaluation shows successful recognition rates of up to 95%. The recognition framework is packaged into a service for easy integration with existing applications

    Scalable visual analytics over voluminous spatiotemporal data

    Get PDF
    2018 Fall.Includes bibliographical references.Visualization is a critical part of modern data analytics. This is especially true of interactive and exploratory visual analytics, which encourages speedy discovery of trends, patterns, and connections in data by allowing analysts to rapidly change what data is displayed and how it is displayed. Unfortunately, the explosion of data production in recent years has led to problems of scale as storage, processing, querying, and visualization have struggled to keep pace with data volumes. Visualization of spatiotemporal data pose unique challenges, thanks in part to high-dimensionality in the input feature space, interactions between features, and the production of voluminous, high-resolution outputs. In this dissertation, we address challenges associated with supporting interactive, exploratory visualization of voluminous spatiotemporal datasets and underlying phenomena. This requires the visualization of millions of entities and changes to these entities as the spatiotemporal phenomena unfolds. The rendering and propagation of spatiotemporal phenomena must be both accurate and timely. Key contributions of this dissertation include: 1) the temporal and spatial coupling of spatially localized models to enable the visualization of phenomena at far greater geospatial scales; 2) the ability to directly compare and contrast diverging spatiotemporal outcomes that arise from multiple exploratory "what-if" queries; and 3) the computational framework required to support an interactive user experience in a heavily resource-constrained environment. We additionally provide support for collaborative and competitive exploration with multiple synchronized clients

    An adaptive physiology-aware communication framework for distributed medical cyber physical systems

    Get PDF
    For emergency medical cyber-physical systems, enhancing the safety and effectiveness of patient care, especially in remote rural areas, is essential. While the doctor to patient ratio in the United States is 30 to 10,000 in large metropolitan areas, it is only 5 to 10,000 in most rural areas; and the highest death rates are often found in the most rural counties. Use of telecommunication technologies can enhance effectiveness and safety of emergency ambulance transport of patients from rural areas to a regional center hospital. It enables remote monitoring of patients by the physician experts at the tertiary center. There are critical times during transport when physician experts can provide vital assistance to the ambulance Emergency Medical Technicians (EMT) to associate best treatments. However, the communication along the roads in rural areas can range irregularly from 4G to low speed 2G links, including some parts of routes with cellular network communication breakage. This unreliable and limited communication bandwidth together with the produced mass of clinical data and the many information exchanges pose a major challenge in real-time supervision of patients. In this study, we define the notion of distributed emergency care, and propose a novel adaptive physiology-aware communication framework which is aware of the patient condition, the underlying network bandwidth, and the criticality of clinical data in the context of the specific diseases. Using the concept of distributed medical CPS models, we study the semantics relation of communication Quality of Service (QoS) with clinical messages, criticality of clinical data, and an ambulance's undertaken route all in a disease-aware manner. Our proposed communication framework is aimed to enhance remote monitoring of acute patients during ambulance transport from a rural hospital to a regional center hospital. We evaluate the components of our framework through various experimentation phases including simulation, instrumentation, real-world profiling, and validation
    • …
    corecore