47 research outputs found

    The Buffered Block Forward Backward technique for solving electromagnetic wave scattering problems

    Get PDF
    This work focuses on efficient numerical techniques for solving electromagnetic wave scattering problems. The research is focused on three main areas: scattering from perfect electric conductors, 2D dielectric scatterers and 3D dielectric scattering objects. The problem of fields scattered from perfect electric conductors is formulated using the Electric Field Integral Equation. The Coupled Field Integral Equation is used when a 2D homogeneous dielectric object is considered. The Combined Field Integral Equation describes the problem of scattering from 3D homogeneous dielectric objects. Discretising the Integral Equation Formulation using the Method of Moments creates the matrix equation that is to be solved. Due to the large number of discretisations necessary the resulting matrices are of significant size and therefore the matrix equations cannot be solved by direct inversion and iterative methods are employed instead. Various iterative techniques for solving the matrix equation are presented including stationary methods such as the ”forwardbackward” technique, as well its matrix-block version. A novel iterative solver referred to as Buffered Block Forward Backward (BBFB) method is then described and investigated. It is shown that the incorporation of buffer regions dampens spurious diffraction effects and increases the computational efficiency of the algorithm. The BBFB is applied to both perfect electric conductors and homogeneous dielectric objects. The convergence of the BBFB method is compared to that of other techniques and it is shown that, depending on the grouping and buffering used, it can be more effective than classical methods based on Krylov subspaces for example. A possible application of the BBFB, namely the design of 2D dielectric photonic band-gap TeraHertz waveguides is investigated. i

    Gratings: Theory and Numeric Applications

    Get PDF
    International audienceThe book containes 11 chapters written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers

    Gratings: Theory and Numeric Applications, Second Revisited Edition

    Get PDF
    International audienceThe second Edition of the Book contains 13 chapters, written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers.In comparison with the First Edition, we have added two more chapters (ch.12 and ch.13), and revised four other chapters (ch.6, ch.7, ch.10, and ch.11

    Theoretical and computational insights into the nonlinear optics of nanostructured bulk and 2D materials

    Get PDF
    In this thesis, a comprehensive analytical and computational study of linear and nonlinear optical response of nanostructured two-dimensional (2D) and bulk materials is presented. The new numerical methods developed in this thesis facilitate the efficient and accurate design of new artificial optical materials and novel nonlinear optical devices. Moreover, the presented results and conclusions can provide a deeper theoretical understanding of different resonant, nonlinear optical phenomena in photonic nanostructures. Two computational electromagnetic methods to calculate the interaction of light with linear and nonlinear diffraction gratings and more general periodic structures have been developed. An efficient formulation of the rigorous coupled-wave analysis (RCWA), a modal frequency domain method, for accurate near-field calculations and for complex oblique structures has been proposed. This method has been implemented into a powerful commercial software tool and applied to calculate diffraction in several nanophotonic devices highly relevant to practical applications. Beyond this commercial implementation, the RCWA has been extended to describe linear and nonlinear optical effects in nanostructured 2D materials, with second- and third-harmonic generation being the most important nonlinear processes. A key feature of this formulation is that it is independent of the height of the 2D material, and only requires knowledge of its linear and nonlinear optical properties. Using this method, plasmon resonances of nanostructured graphene have been investigated, and tuneable Fano resonances have been explored to increase the nonlinear efficiency of heterostructures containing transition metal dichalcogenide monolayers and nanopatterned slab waveguides. The second thrust of the thesis was devoted to extending the so-called generalised source method (GSM) to the area of nonlinear optics. In particular, its mathematical formulation has been extended to incorporate second- and third-order nonlinear optical effects, and the proposed nonlinear GSM has been used to design and optimise multi-resonant photonic devices made of nonlinear optical materials. In addition, this advanced computational method facilitated the understanding of strong nonlinear optical activity in plasmonic nanostructures, and explained the multipolar nonlinear optical response of certain nonlinear metasurfaces

    Electromagnetic Waves

    Get PDF
    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, and finally, the biological effects and medical applications of electromagnetic fields

    Terahertz response of microfluidic-jetted fabricated 3D flexible metamaterials

    Get PDF
    Conventional materials exhibit some restrictions on their electromagnetic properties. Especially in terahertz region, for example, materials that exhibit magnetic response are far less common in nature than materials that exhibit electric response. However, materials can be designed, namely artificial man-made metamaterials that exhibit electromagnetic properties that are not found in natural materials by adjusting, for example, the dielectric, magnetic or structural parameters of the constituent elements. This dissertation demonstrates the use of new fabrication techniques to construct metamaterials in THz range via a material deposition system. The metamaterials are fabricated by stacking alternative layers with conventional designs such as single ring- split ring resonators (SRR) and microstrips to form a 3D metamaterial structure. Conductive nano-particle Ag, Cu and semiconductor polymer fluids are used as structural mediums. The metamaterials are fabricated on polyimide substrate. Their flexible nature will be advantageous in future device innovations. In order to obtain electromagnetic resonance in the terahertz range, the dimensions of the single ring-SRR and microstrips are first approximated by analytical methods and then confirmed by numerical simulation. The fabricated metamaterials are then characterized in transmission mode using Time-domain THz Spectroscopy (THz-TDS) in the 0.1 to 2 THz range
    corecore