7,174 research outputs found

    Automatic Linear and Curvilinear Mesh Generation Driven by Validity Fidelity and Topological Guarantees

    Get PDF
    Image-based geometric modeling and mesh generation play a critical role in computational biology and medicine. In this dissertation, a comprehensive computational framework for both guaranteed quality linear and high-order automatic mesh generation is presented. Starting from segmented images, a quality 2D/3D linear mesh is constructed. The boundary of the constructed mesh is proved to be homeomorphic to the object surface. In addition, a guaranteed dihedral angle bound of up to 19:47o for the output tetrahedra is provided. Moreover, user-specified guaranteed bounds on the distance between the boundaries of the mesh and the boundaries of the materials are allowed. The mesh contains a small number of mesh elements that comply with these guarantees, and the runtime is compatible in performance with other software. Then the curvilinear mesh generator allows for a transformation of straight-sided meshes to curvilinear meshes with C1 or C2 smooth boundaries while keeping all elements valid and with good quality as measured by their Jacobians. The mathematical proof shows that the meshes generated by our algorithm are guaranteed to be homeomorphic to the input images, and all the elements inside the meshes are guaranteed to be with good quality. Experimental results show that the mesh boundaries represent the objects\u27 shapes faithfully, and the accuracy of the representation is improved compared to the corresponding linear mesh

    Optimizing the geometrical accuracy of curvilinear meshes

    Full text link
    This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a particular role of the enhanced mesh boundary smoothness.Comment: Submitted to JC

    Generation of curved high-order meshes with optimal quality and geometric accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric L2-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the L2-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.Peer ReviewedPostprint (published version

    Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric Full-size image (<1 K)-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the Full-size image (<1 K)-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.This research was partially supported by the Spanish Ministerio de EconomĂ­a y Competitividad under grand contract CTM2014-55014-C3-3-R, and by the Government of Catalonia under grand contract 2014-SGR-1471. The work of the last author was supported by the European Commission through the Marie Sklodowska-Curie Actions (HiPerMeGaFlows project).Peer ReviewedPostprint (published version

    A distortion measure to validate and generate curved high-order meshes on CAD surfaces with independence of parameterization

    Get PDF
    This is the accepted version of the following article: [Gargallo-Peiró, A., Roca, X., Peraire, J., and Sarrate, J. (2016) A distortion measure to validate and generate curved high-order meshes on CAD surfaces with independence of parameterization. Int. J. Numer. Meth. Engng, 106: 1100–1130. doi: 10.1002/nme.5162], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5162/abstractA framework to validate and generate curved nodal high-order meshes on Computer-Aided Design (CAD) surfaces is presented. The proposed framework is of major interest to generate meshes suitable for thin-shell and 3D finite element analysis with unstructured high-order methods. First, we define a distortion (quality) measure for high-order meshes on parameterized surfaces that we prove to be independent of the surface parameterization. Second, we derive a smoothing and untangling procedure based on the minimization of a regularization of the proposed distortion measure. The minimization is performed in terms of the parametric coordinates of the nodes to enforce that the nodes slide on the surfaces. Moreover, the proposed algorithm repairs invalid curved meshes (untangling), deals with arbitrary polynomial degrees (high-order), and handles with low-quality CAD parameterizations (independence of parameterization). Third, we use the optimization procedure to generate curved nodal high-order surface meshes by means of an a posteriori approach. Given a linear mesh, we increase the polynomial degree of the elements, curve them to match the geometry, and optimize the location of the nodes to ensure mesh validity. Finally, we present several examples to demonstrate the features of the optimization procedure, and to illustrate the surface mesh generation process.Peer ReviewedPostprint (author's final draft
    • …
    corecore