25,640 research outputs found

    Classification methods for Hilbert data based on surrogate density

    Get PDF
    An unsupervised and a supervised classification approaches for Hilbert random curves are studied. Both rest on the use of a surrogate of the probability density which is defined, in a distribution-free mixture context, from an asymptotic factorization of the small-ball probability. That surrogate density is estimated by a kernel approach from the principal components of the data. The focus is on the illustration of the classification algorithms and the computational implications, with particular attention to the tuning of the parameters involved. Some asymptotic results are sketched. Applications on simulated and real datasets show how the proposed methods work.Comment: 33 pages, 11 figures, 6 table

    Nonparametric Hierarchical Clustering of Functional Data

    Full text link
    In this paper, we deal with the problem of curves clustering. We propose a nonparametric method which partitions the curves into clusters and discretizes the dimensions of the curve points into intervals. The cross-product of these partitions forms a data-grid which is obtained using a Bayesian model selection approach while making no assumptions regarding the curves. Finally, a post-processing technique, aiming at reducing the number of clusters in order to improve the interpretability of the clustering, is proposed. It consists in optimally merging the clusters step by step, which corresponds to an agglomerative hierarchical classification whose dissimilarity measure is the variation of the criterion. Interestingly this measure is none other than the sum of the Kullback-Leibler divergences between clusters distributions before and after the merges. The practical interest of the approach for functional data exploratory analysis is presented and compared with an alternative approach on an artificial and a real world data set

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Higher Order Statistics from the Apm Galaxy Survey

    Full text link
    We apply a new statistics, the factorial moment correlators, to density maps obtained from the APM survey. The resulting correlators are all proportional to the two point correlation function, substantially amplified, with an amplification nearly exponential with the total rank of the correlators. This confirms the validity of the hierarchical clustering assumption on the dynamic range examined, corresponding to 0.5 \hmpc - 50 \hmpc in three dimensional space. The Kirkwood superposition with loop terms is strongly rejected. The structure coefficients of the hierarchy are also fitted. The high quality of the APM catalog enabled us to disentangle the various contributions from the power spectrum, small scale nonlinear clustering, and combinatorial effects, all of which affect the amplification of the correlators. These effects should appear in correlations of clusters in a similar fashion.Comment: 30 pages text, 3 pages tables, 5 figures, uuencoded tarred postscrip
    • …
    corecore