541 research outputs found

    Extended object reconstruction in adaptive-optics imaging: the multiresolution approach

    Full text link
    We propose the application of multiresolution transforms, such as wavelets (WT) and curvelets (CT), to the reconstruction of images of extended objects that have been acquired with adaptive optics (AO) systems. Such multichannel approaches normally make use of probabilistic tools in order to distinguish significant structures from noise and reconstruction residuals. Furthermore, we aim to check the historical assumption that image-reconstruction algorithms using static PSFs are not suitable for AO imaging. We convolve an image of Saturn taken with the Hubble Space Telescope (HST) with AO PSFs from the 5-m Hale telescope at the Palomar Observatory and add both shot and readout noise. Subsequently, we apply different approaches to the blurred and noisy data in order to recover the original object. The approaches include multi-frame blind deconvolution (with the algorithm IDAC), myopic deconvolution with regularization (with MISTRAL) and wavelets- or curvelets-based static PSF deconvolution (AWMLE and ACMLE algorithms). We used the mean squared error (MSE) and the structural similarity index (SSIM) to compare the results. We discuss the strengths and weaknesses of the two metrics. We found that CT produces better results than WT, as measured in terms of MSE and SSIM. Multichannel deconvolution with a static PSF produces results which are generally better than the results obtained with the myopic/blind approaches (for the images we tested) thus showing that the ability of a method to suppress the noise and to track the underlying iterative process is just as critical as the capability of the myopic/blind approaches to update the PSF.Comment: In revision in Astronomy & Astrophysics. 19 pages, 13 figure

    Contrast-distorted image quality assessment based on curvelet domain features

    Get PDF
    Contrast is one of the most popular forms of distortion. Recently, the existing image quality assessment algorithms (IQAs) works focusing on distorted images by compression, noise and blurring. Reduced-reference image quality metric for contrast-changed images (RIQMC) and no reference-image quality assessment (NR-IQA) for contrast-distorted images (NR-IQA-CDI) have been created for CDI. NR-IQA-CDI showed poor performance in two out of three image databases, where the pearson correlation coefficient (PLCC) were only 0.5739 and 0.7623 in TID2013 and CSIQ database, respectively. Spatial domain features are the basis of NR-IQA-CDI architecture. Therefore, in this paper, the spatial domain features are complementary with curvelet domain features, in order to take advantage of the potent properties of the curvelet in extracting information from images such as multiscale and multidirectional. The experimental outcome rely on K-fold cross validation (K ranged 2-10) and statistical test showed that the performance of NR-IQA-CDI rely on curvelet domain features (NR-IQA-CDI-CvT) significantly surpasses those which are rely on five spatial domain features

    A no-reference optical flow-based quality evaluator for stereoscopic videos in curvelet domain

    Get PDF
    Most of the existing 3D video quality assessment (3D-VQA/SVQA) methods only consider spatial information by directly using an image quality evaluation method. In addition, a few take the motion information of adjacent frames into consideration. In practice, one may assume that a single data-view is unlikely to be sufficient for effectively learning the video quality. Therefore, integration of multi-view information is both valuable and necessary. In this paper, we propose an effective multi-view feature learning metric for blind stereoscopic video quality assessment (BSVQA), which jointly focuses on spatial information, temporal information and inter-frame spatio-temporal information. In our study, a set of local binary patterns (LBP) statistical features extracted from a computed frame curvelet representation are used as spatial and spatio-temporal description, and the local flow statistical features based on the estimation of optical flow are used to describe the temporal distortion. Subsequently, a support vector regression (SVR) is utilized to map the feature vectors of each single view to subjective quality scores. Finally, the scores of multiple views are pooled into the final score according to their contribution rate. Experimental results demonstrate that the proposed metric significantly outperforms the existing metrics and can achieve higher consistency with subjective quality assessment

    Multi-Sensor Image Fusion Based on Moment Calculation

    Full text link
    An image fusion method based on salient features is proposed in this paper. In this work, we have concentrated on salient features of the image for fusion in order to preserve all relevant information contained in the input images and tried to enhance the contrast in fused image and also suppressed noise to a maximum extent. In our system, first we have applied a mask on two input images in order to conserve the high frequency information along with some low frequency information and stifle noise to a maximum extent. Thereafter, for identification of salience features from sources images, a local moment is computed in the neighborhood of a coefficient. Finally, a decision map is generated based on local moment in order to get the fused image. To verify our proposed algorithm, we have tested it on 120 sensor image pairs collected from Manchester University UK database. The experimental results show that the proposed method can provide superior fused image in terms of several quantitative fusion evaluation index.Comment: 5 pages, International Conferenc
    • 

    corecore