77,926 research outputs found

    Optimized normal and distance matching for heterogeneous object modeling

    Get PDF
    This paper presents a new optimization methodology of material blending for heterogeneous object modeling by matching the material governing features for designing a heterogeneous object. The proposed method establishes point-to-point correspondence represented by a set of connecting lines between two material directrices. To blend the material features between the directrices, a heuristic optimization method developed with the objective is to maximize the sum of the inner products of the unit normals at the end points of the connecting lines and minimize the sum of the lengths of connecting lines. The geometric features with material information are matched to generate non-self-intersecting and non-twisted connecting surfaces. By subdividing the connecting lines into equal number of segments, a series of intermediate piecewise curves are generated to represent the material metamorphosis between the governing material features. Alternatively, a dynamic programming approach developed in our earlier work is presented for comparison purposes. Result and computational efficiency of the proposed heuristic method is also compared with earlier techniques in the literature. Computer interface implementation and illustrative examples are also presented in this paper

    Computing the Similarity Between Moving Curves

    Get PDF
    In this paper we study similarity measures for moving curves which can, for example, model changing coastlines or retreating glacier termini. Points on a moving curve have two parameters, namely the position along the curve as well as time. We therefore focus on similarity measures for surfaces, specifically the Fr\'echet distance between surfaces. While the Fr\'echet distance between surfaces is not even known to be computable, we show for variants arising in the context of moving curves that they are polynomial-time solvable or NP-complete depending on the restrictions imposed on how the moving curves are matched. We achieve the polynomial-time solutions by a novel approach for computing a surface in the so-called free-space diagram based on max-flow min-cut duality

    Universal behavior of two-dimensional bosonic gases at Berezinskii-Kosterlitz-Thouless transitions

    Full text link
    We study the universal critical behavior of two-dimensional (2D) lattice bosonic gases at the Berezinskii-Kosterlitz-Thouless (BKT) transition, which separates the low-temperature superfluid phase from the high-temperature normal phase. For this purpose, we perform quantum Monte Carlo simulations of the hard-core Bose-Hubbard (BH) model at zero chemical potential. We determine the critical temperature by using a matching method that relates finite-size data for the BH model with corresponding data computed in the classical XY model. In this approach, the neglected scaling corrections decay as inverse powers of the lattice size L, and not as powers of 1/lnL, as in more standard approaches, making the estimate of the critical temperature much more reliable. Then, we consider the BH model in the presence of a trapping harmonic potential, and verify the universality of the trap-size dependence at the BKT critical point. This issue is relevant for experiments with quasi-2D trapped cold atoms.Comment: 17 pages, 12 figs, final versio
    • …
    corecore