59,972 research outputs found

    A Continuum,O(N) Monte-Carlo algorithm for charged particles

    Full text link
    We introduce a Monte-Carlo algorithm for the simulation of charged particles moving in the continuum. Electrostatic interactions are not instantaneous as in conventional approaches, but are mediated by a constrained, diffusing electric field on an interpolating lattice. We discuss the theoretical justifications of the algorithm and show that it efficiently equilibrates model polyelectrolytes and polar fluids. In order to reduce lattice artifacts that arise from the interpolation of charges to the grid we implement a local, dynamic subtraction algorithm. This dynamic scheme is completely general and can also be used with other Coulomb codes, such as multigrid based methods

    Learning Temporal Alignment Uncertainty for Efficient Event Detection

    Full text link
    In this paper we tackle the problem of efficient video event detection. We argue that linear detection functions should be preferred in this regard due to their scalability and efficiency during estimation and evaluation. A popular approach in this regard is to represent a sequence using a bag of words (BOW) representation due to its: (i) fixed dimensionality irrespective of the sequence length, and (ii) its ability to compactly model the statistics in the sequence. A drawback to the BOW representation, however, is the intrinsic destruction of the temporal ordering information. In this paper we propose a new representation that leverages the uncertainty in relative temporal alignments between pairs of sequences while not destroying temporal ordering. Our representation, like BOW, is of a fixed dimensionality making it easily integrated with a linear detection function. Extensive experiments on CK+, 6DMG, and UvA-NEMO databases show significant performance improvements across both isolated and continuous event detection tasks.Comment: Appeared in DICTA 2015, 8 page

    Non-adiabatic Effects in the Dissociation of Oxygen Molecules at the Al(111) Surface

    Full text link
    The measured low initial sticking probability of oxygen molecules at the Al(111) surface that had puzzled the field for many years was recently explained in a non-adiabatic picture invoking spin-selection rules [J. Behler et al., Phys. Rev. Lett. 94, 036104 (2005)]. These selection rules tend to conserve the initial spin-triplet character of the free O2 molecule during the molecule's approach to the surface. A new locally-constrained density-functional theory approach gave access to the corresponding potential-energy surface (PES) seen by such an impinging spin-triplet molecule and indicated barriers to dissociation which reduce the sticking probability. Here, we further substantiate this non-adiabatic picture by providing a detailed account of the employed approach. Building on the previous work, we focus in particular on inaccuracies in present-day exchange-correlation functionals. Our analysis shows that small quantitative differences in the spin-triplet constrained PES obtained with different gradient-corrected functionals have a noticeable effect on the lowest kinetic energy part of the resulting sticking curve.Comment: 17 pages including 11 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Scalar Mesons a0(1450) and sigma(600) from Lattice QCD

    Full text link
    We study the a0 and sigma mesons with the overlap fermion in the chiral regime with the pion mass as low as 182 MeV in the quenched approximation. After the eta'pi ghost states are separated, we find that the a0 mass with q\bar{q} interpolation field to be almost independent of the quark mass in the region below the strange quark mass. The chirally extrapolated results are consistent with a0(1450) being the u\bar{d} meson and K0*(1430) being the u\bar{s} meson with calculated masses at 1.42+_0.13 GeV and 1.41+_ 0.12 GeV respectively. We also calculate the scalar mesonium with a tetraquark interpolation field. In addition to the two pion scattering states, we find a state at around 550 MeV. Through the study of volume dependence, we confirm that this state is a one-particle state, in contrast to the two-pion scattering states. This suggests that the observed state is a tetraquark mesonium which is quite possibly the sigma(600) meson.Comment: 11 pages, 9 figures, accepted for publication in Phys. Rev.

    On a nonlinear partial differential algebraic system arising in technical textile industry: Analysis and numerics

    Full text link
    In this paper we explore a numerical scheme for a nonlinear fourth order system of partial differential algebraic equations that describes the dynamics of slender inextensible elastica as they arise in the technical textile industry. Applying a semi-discretization in time, the resulting sequence of nonlinear elliptic systems with the algebraic constraint for the local length preservation is reformulated as constrained optimization problems in a Hilbert space setting that admit a solution at each time level. Stability and convergence of the scheme are proved. The numerical realization is based on a finite element discretization in space. The simulation results confirm the analytically predicted properties of the scheme.Comment: Abstract and introduction are partially rewritten. The numerical study in Section 4 is completely rewritte
    • …
    corecore