963 research outputs found

    Investigations into the shape-preserving interpolants using symbolic computation

    Get PDF
    Shape representation is a central issue in computer graphics and computer-aided geometric design. Many physical phenomena involve curves and surfaces that are monotone (in some directions) or are convex. The corresponding representation problem is given some monotone or convex data, and a monotone or convex interpolant is found. Standard interpolants need not be monotone or convex even though they may match monotone or convex data. Most of the methods of investigation of this problem involve the utilization of quadratic splines or Hermite polynomials. In this investigation, a similar approach is adopted. These methods require derivative information at the given data points. The key to the problem is the selection of the derivative values to be assigned to the given data points. Schemes for choosing derivatives were examined. Along the way, fitting given data points by a conic section has also been investigated as part of the effort to study shape-preserving quadratic splines

    Surface fitting three-dimensional bodies

    Get PDF
    The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points

    Fast and accurate clothoid fitting

    Full text link
    An effective solution to the problem of Hermite G1G^1 interpolation with a clothoid curve is provided. At the beginning the problem is naturally formulated as a system of nonlinear equations with multiple solutions that is generally difficult to solve numerically. All the solutions of this nonlinear system are reduced to the computation of the zeros of a single nonlinear equation. A simple strategy, together with the use of a good and simple guess function, permits to solve the single nonlinear equation with a few iterations of the Newton--Raphson method. The computation of the clothoid curve requires the computation of Fresnel and Fresnel related integrals. Such integrals need asymptotic expansions near critical values to avoid loss of precision. This is necessary when, for example, the solution of interpolation problem is close to a straight line or an arc of circle. Moreover, some special recurrences are deduced for the efficient computation of asymptotic expansion. The reduction of the problem to a single nonlinear function in one variable and the use of asymptotic expansions make the solution algorithm fast and robust.Comment: 14 pages, 3 figures, 9 Algorithm Table

    Interpretation of overtracing freehand sketching for geometric shapes

    Get PDF
    This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is followed by an innovative strokes grouping process that handles lines and curves separately. The grouped strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction. Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more intuitive to the user

    On the Geometries of Conic Section Representation of Noisy Object Boundaries

    Get PDF
    This paper studies some geometrical properties of conic sections and the utilization of these properties for the generation of conic section representations of object boundaries in digital images. Several geometrical features of the conic sections, such as the chord, the characteristic point, the guiding triangles, and their appearances under the tessellation and noise corruption of the digital images are discussed. The study leads to a noniterative algorithm that takes advantage of these features in the process of formulating the conic section parameters and generating the approximations of object boundaries from the given sequences of edge pixels in the images. The results can be optimized with respect to certain different criteria of the fittings

    Surface Fitting Using Implicit Algebraic Surface Patches

    Get PDF
    • …
    corecore