471 research outputs found

    Optimization of neural networks for deep learning and applications to CT image segmentation

    Full text link
    [eng] During the last few years, AI development in deep learning has been going so fast that even important researchers, politicians, and entrepreneurs are signing petitions to try to slow it down. The newest methods for natural language processing and image generation are achieving results so unbelievable that people are seriously starting to think they can be dangerous for society. In reality, they are not dangerous (at the moment) even if we have to admit we reached a point where we have no more control over the flux of data inside the deep networks. It is impossible to open a modern deep neural network and interpret how it processes the information and, in many cases, explain how or why it gives back that particular result. One of the goals of this doctoral work has been to study the behavior of weights in convolutional neural networks and in transformers. We hereby present a work that demonstrates how to invert 3x3 convolutions after training a neural network able to learn how to classify images, with the future aim of having precisely invertible convolutional neural networks. We demonstrate that a simple network can learn to classify images on an open-source dataset without loss in accuracy, with respect to a non-invertible one. All that with the ability to reconstruct the original image without detectable error (on 8-bit images) in up to 20 convolutions stacked in a row. We present a thorough comparison between our method and the standard. We tested the performances of the five most used transformers for image classification on an open- source dataset. Studying the embedded matrices, we have been able to provide two criteria that can help transformers learn with a training time reduction of up to 30% and with no impact on classification accuracy. The evolution of deep learning techniques is also touching the field of digital health. With tens of thousands of new start-ups and more than 1B $ of investments only in the last year, this field is growing rapidly and promising to revolutionize healthcare. In this thesis, we present several neural networks for the segmentation of lungs, lung nodules, and areas affected by pneumonia induced by COVID-19, in chest CT scans. The architecturesm we used are all residual convolutional neural networks inspired by UNet and Inception. We customized them with novel loss functions and layers studied to achieve high performances on these particular applications. The errors on the surface of nodule segmentation masks are not over 1mm in more than 99% of the cases. Our algorithm for COVID-19 lesion detection has a specificity of 100% and overall accuracy of 97.1%. In general, it surpasses the state-of-the-art in all the considered statistics, using UNet as a benchmark. Combining these with other algorithms able to detect and predict lung cancer, the whole work was presented in a European innovation program and judged of high interest by worldwide experts. With this work, we set the basis for the future development of better AI tools in healthcare and scientific investigation into the fundamentals of deep learning.[spa] Durante los últimos años, el desarrollo de la IA en el aprendizaje profundo ha ido tan rápido que Incluso importantes investigadores, políticos y empresarios están firmando peticiones para intentar para ralentizarlo. Los métodos más nuevos para el procesamiento y la generación de imágenes y lenguaje natural, están logrando resultados tan increíbles que la gente está empezando a preocuparse seriamente. Pienso que pueden ser peligrosos para la sociedad. En realidad, no son peligrosos (al menos de momento) incluso si tenemos que admitir que llegamos a un punto en el que ya no tenemos control sobre el flujo de datos dentro de las redes profundas. Es imposible abrir una moderna red neuronal profunda e interpretar cómo procesa la información y, en muchos casos, explique cómo o por qué devuelve ese resultado en particular, uno de los objetivos de este doctorado. El trabajo ha consistido en estudiar el comportamiento de los pesos en redes neuronales convolucionales y en transformadores. Por la presente presentamos un trabajo que demuestra cómo invertir 3x3 convoluciones después de entrenar una red neuronal capaz de aprender a clasificar imágenes, con el objetivo futuro de tener redes neuronales convolucionales precisamente invertibles. Nosotros queremos demostrar que una red simple puede aprender a clasificar imágenes en un código abierto conjunto de datos sin pérdida de precisión, con respecto a uno no invertible. Todo eso con la capacidad de reconstruir la imagen original sin errores detectables (en imágenes de 8 bits) en hasta 20 convoluciones apiladas en fila. Presentamos una exhaustiva comparación entre nuestro método y el estándar. Probamos las prestaciones de los cinco transformadores más utilizados para la clasificación de imágenes en abierto. conjunto de datos de origen. Al estudiar las matrices incrustadas, hemos sido capaz de proporcionar dos criterios que pueden ayudar a los transformadores a aprender con un tiempo de capacitación reducción de hasta el 30% y sin impacto en la precisión de la clasificación. La evolución de las técnicas de aprendizaje profundo también está afectando al campo de la salud digital. Con decenas de miles de nuevas empresas y más de mil millones de dólares en inversiones sólo en el año pasado, este campo está creciendo rápidamente y promete revolucionar la atención médica. En esta tesis, presentamos varias redes neuronales para la segmentación de pulmones, nódulos pulmonares, y zonas afectadas por neumonía inducida por COVID-19, en tomografías computarizadas de tórax. La arquitectura que utilizamos son todas redes neuronales convolucionales residuales inspiradas en UNet. Las personalizamos con nuevas funciones y capas de pérdida, estudiado para lograr altos rendimientos en estas aplicaciones particulares. Los errores en la superficie de las máscaras de segmentación de los nódulos no supera 1 mm en más del 99% de los casos. Nuestro algoritmo para la detección de lesiones de COVID-19 tiene una especificidad del 100% y en general precisión del 97,1%. En general supera el estado del arte en todos los aspectos considerados, estadísticas, utilizando UNet como punto de referencia. Combinando estos con otros algoritmos capaces de detectar y predecir el cáncer de pulmón, todo el trabajo se presentó en una innovación europea programa y considerado de gran interés por expertos de todo el mundo. Con este trabajo, sentamos las bases para el futuro desarrollo de mejores herramientas de IA en Investigación sanitaria y científica sobre los fundamentos del aprendizaje profundo

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023

    Novel 129Xe Magnetic Resonance Imaging and Spectroscopy Measurements of Pulmonary Gas-Exchange

    Get PDF
    Gas-exchange is the primary function of the lungs and involves removing carbon dioxide from the body and exchanging it within the alveoli for inhaled oxygen. Several different pulmonary, cardiac and cardiovascular abnormalities have negative effects on pulmonary gas-exchange. Unfortunately, clinical tests do not always pinpoint the problem; sensitive and specific measurements are needed to probe the individual components participating in gas-exchange for a better understanding of pathophysiology, disease progression and response to therapy. In vivo Xenon-129 gas-exchange magnetic resonance imaging (129Xe gas-exchange MRI) has the potential to overcome these challenges. When participants inhale hyperpolarized 129Xe gas, it has different MR spectral properties as a gas, as it diffuses through the alveolar membrane and as it binds to red-blood-cells. 129Xe MR spectroscopy and imaging provides a way to tease out the different anatomic components of gas-exchange simultaneously and provides spatial information about where abnormalities may occur. In this thesis, I developed and applied 129Xe MR spectroscopy and imaging to measure gas-exchange in the lungs alongside other clinical and imaging measurements. I measured 129Xe gas-exchange in asymptomatic congenital heart disease and in prospective, controlled studies of long-COVID. I also developed mathematical tools to model 129Xe MR signals during acquisition and reconstruction. The insights gained from my work underscore the potential for 129Xe gas-exchange MRI biomarkers towards a better understanding of cardiopulmonary disease. My work also provides a way to generate a deeper imaging and physiologic understanding of gas-exchange in vivo in healthy participants and patients with chronic lung and heart disease

    Towards Robot Autonomy in Medical Procedures Via Visual Localization and Motion Planning

    Get PDF
    Robots performing medical procedures with autonomous capabilities have the potential to positively effect patient care and healthcare system efficiency. These benefits can be realized by autonomous robots facilitating novel procedures, increasing operative efficiency, standardizing intra- and inter-physician performance, democratizing specialized care, and focusing the physician’s time on subtasks that best leverage their expertise. However, enabling medical robots to act autonomously in a procedural environment is extremely challenging. The deforming and unstructured nature of the environment, the lack of features in the anatomy, and sensor size constraints coupled with the millimeter level accuracy required for safe medical procedures introduce a host of challenges not faced by robots operating in structured environments such as factories or warehouses. Robot motion planning and localization are two fundamental abilities for enabling robot autonomy. Motion planning methods compute a sequence of safe and feasible motions for a robot to accomplish a specified task, where safe and feasible are defined by constraints with respect to the robot and its environment. Localization methods estimate the position and orientation of a robot in its environment. Developing such methods for medical robots that overcome the unique challenges in procedural environments is critical for enabling medical robot autonomy. In this dissertation, I developed and evaluated motion planning and localization algorithms towards robot autonomy in medical procedures. A majority of my work was done in the context of an autonomous medical robot built for enhanced lung nodule biopsy. First, I developed a dataset of medical environments spanning various organs and procedures to foster future research into medical robots and automation. I used this data in my own work described throughout this dissertation. Next, I used motion planning to characterize the capabilities of the lung nodule biopsy robot compared to existing clinical tools and I highlighted trade-offs in robot design considerations. Then, I conducted a study to experimentally demonstrate the benefits of the autonomous lung robot in accessing otherwise hard-to-reach lung nodules. I showed that the robot enables access to lung regions beyond the reach of existing clinical tools with millimeter-level accuracy sufficient for accessing the smallest clinically operable nodules. Next, I developed a localization method to estimate the bronchoscope’s position and orientation in the airways with respect to a preoperatively planned needle insertion pose. The method can be used by robotic bronchoscopy systems and by traditional manually navigated bronchoscopes. The method is designed to overcome challenges with tissue motion and visual homogeneity in the airways. I demonstrated the success of this method in simulated lungs undergoing respiratory motion and showed the method’s ability to generalize across patients.Doctor of Philosoph

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    Multiscale Multimodal Characterization and Simulation of Structural Alterations in Failed Bioprosthetic Heart Valves.

    Get PDF
    Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves may serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context, hence providing design cues for improved bioprosthetic valve alternatives

    Propaedeutics of Internal Diseases

    Get PDF
    УЧЕБНЫЕ ПОСОБИЯДИАГНОСТИКАПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ БОЛЕЗНИ /ДИАГНОСТИКАМОЧЕПОЛОВЫЕ БОЛЕЗНИ /ДИАГНОСТИКАГЕМАТОЛОГИЧЕСКИЕ БОЛЕЗНИ /ДИАГНОСТИКАДИАГНОСТИЧЕСКИЕ МЕТОДЫ ЭНДОКРИННЫЕДИАГНОСТИЧЕСКИЕ МЕТОДЫ ПИЩЕВАРИТЕЛЬНЫЕКОСТНО-МЫШЕЧНОЙ СИСТЕМЫ БОЛЕЗНИ /ДИАГНОСТИКАТЕРАПИЯ (ДИСЦИПЛИНА)DISEASES OF THE ENDOCRINE GLANDSDISEASES OF THE MUSCULOSKELETAL SYSTEMDISEASES OF THE BLOODDISEASES OF THE URINARY TRACTDISEASES OF THE DIGESTIVE SYSTEMINTERNAL DISEASESPROPAEDEUTICS OF INTERNAL DISEASESINTERNAL MEDICINEИНОСТРАННЫЕ СТУДЕНТЫСодержит следующие разделы: обследование пациентов с заболеваниями органов систем пищеварения, мочевыделения, крови, желез внутренней секреции и опорно-двигательного аппарата. Для студентов 2 и 3 курсов, изучающих пропедевтику внутренних болезней на английском языке. It contains the following sections: examination of patients with diseases of the digestive system, urinary tract, blood, endocrine glands and musculoskeletal system

    Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

    Full text link
    Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and clinical drive for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/. Submitte

    Radiogenomics Framework for Associating Medical Image Features with Tumour Genetic Characteristics

    Get PDF
    Significant progress has been made in the understanding of human cancers at the molecular genetics level and it is providing new insights into their underlying pathophysiology. This progress has enabled the subclassification of the disease and the development of targeted therapies that address specific biological pathways. However, obtaining genetic information remains invasive and costly. Medical imaging is a non-invasive technique that captures important visual characteristics (i.e. image features) of abnormalities and plays an important role in routine clinical practice. Advancements in computerised medical image analysis have enabled quantitative approaches to extract image features that can reflect tumour genetic characteristics, leading to the emergence of ‘radiogenomics’. Radiogenomics investigates the relationships between medical imaging features and tumour molecular characteristics, and enables the derivation of imaging surrogates (radiogenomics features) to genetic biomarkers that can provide alternative approaches to non-invasive and accurate cancer diagnosis. This thesis presents a new framework that combines several novel methods for radiogenomics analysis that associates medical image features with tumour genetic characteristics, with the main objectives being: i) a comprehensive characterisation of tumour image features that reflect underlying genetic information; ii) a method that identifies radiogenomics features encoding common pathophysiological information across different diseases, overcoming the dependence on large annotated datasets; and iii) a method that quantifies radiogenomics features from multi-modal imaging data and accounts for unique information encoded in tumour heterogeneity sub-regions. The present radiogenomics methods advance radiogenomics analysis and contribute to improving research in computerised medical image analysis
    corecore