178 research outputs found

    Graph Laplacians and their convergence on random neighborhood graphs

    Full text link
    Given a sample from a probability measure with support on a submanifold in Euclidean space one can construct a neighborhood graph which can be seen as an approximation of the submanifold. The graph Laplacian of such a graph is used in several machine learning methods like semi-supervised learning, dimensionality reduction and clustering. In this paper we determine the pointwise limit of three different graph Laplacians used in the literature as the sample size increases and the neighborhood size approaches zero. We show that for a uniform measure on the submanifold all graph Laplacians have the same limit up to constants. However in the case of a non-uniform measure on the submanifold only the so called random walk graph Laplacian converges to the weighted Laplace-Beltrami operator.Comment: Improved presentation, typos corrected, to appear in JML

    Exploring Data Geometry for Continual Learning

    Full text link
    Continual learning aims to efficiently learn from a non-stationary stream of data while avoiding forgetting the knowledge of old data. In many practical applications, data complies with non-Euclidean geometry. As such, the commonly used Euclidean space cannot gracefully capture non-Euclidean geometric structures of data, leading to inferior results. In this paper, we study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data. Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data, and prevents forgetting by keeping geometric structures of old data into account. In doing so, making use of the mixed curvature space, we propose an incremental search scheme, through which the growing geometric structures are encoded. Then, we introduce an angular-regularization loss and a neighbor-robustness loss to train the model, capable of penalizing the change of global geometric structures and local geometric structures. Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.Comment: CVPR 202

    A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold

    Full text link
    Although Deep Learning (DL) has achieved success in complex Artificial Intelligence (AI) tasks, it suffers from various notorious problems (e.g., feature redundancy, and vanishing or exploding gradients), since updating parameters in Euclidean space cannot fully exploit the geometric structure of the solution space. As a promising alternative solution, Riemannian-based DL uses geometric optimization to update parameters on Riemannian manifolds and can leverage the underlying geometric information. Accordingly, this article presents a comprehensive survey of applying geometric optimization in DL. At first, this article introduces the basic procedure of the geometric optimization, including various geometric optimizers and some concepts of Riemannian manifold. Subsequently, this article investigates the application of geometric optimization in different DL networks in various AI tasks, e.g., convolution neural network, recurrent neural network, transfer learning, and optimal transport. Additionally, typical public toolboxes that implement optimization on manifold are also discussed. Finally, this article makes a performance comparison between different deep geometric optimization methods under image recognition scenarios.Comment: 41 page

    Compactness and isotopy finiteness for submanifolds with uniformly bounded geometric curvature energies

    Full text link
    In this paper, we establish compactness for various geometric curvature energies including integral Menger curvature, and tangent-point repulsive potentials, defined a priori on the class of compact, embedded mm-dimensional Lipschitz submanifolds in Rn{\mathbb{R}}^n. It turns out that due to a smoothing effect any sequence of submanifolds with uniformly bounded energy contains a subsequence converging in C1C^1 to a limit submanifold. This result has two applications. The first one is an isotopy finiteness theorem: there are only finitely many isotopy types of such submanifolds below a given energy value, and we provide explicit bounds on the number of isotopy types in terms of the respective energy. The second one is the lower semicontinuity - with respect to Hausdorff-convergence of submanifolds - of all geometric curvature energies under consideration, which can be used to minimise each of these energies within prescribed isotopy classes.Comment: 44 pages, 5 figure

    Global rates of convergence for nonconvex optimization on manifolds

    Full text link
    We consider the minimization of a cost function ff on a manifold MM using Riemannian gradient descent and Riemannian trust regions (RTR). We focus on satisfying necessary optimality conditions within a tolerance ε\varepsilon. Specifically, we show that, under Lipschitz-type assumptions on the pullbacks of ff to the tangent spaces of MM, both of these algorithms produce points with Riemannian gradient smaller than ε\varepsilon in O(1/ε2)O(1/\varepsilon^2) iterations. Furthermore, RTR returns a point where also the Riemannian Hessian's least eigenvalue is larger than −ε-\varepsilon in O(1/ε3)O(1/\varepsilon^3) iterations. There are no assumptions on initialization. The rates match their (sharp) unconstrained counterparts as a function of the accuracy ε\varepsilon (up to constants) and hence are sharp in that sense. These are the first deterministic results for global rates of convergence to approximate first- and second-order Karush-Kuhn-Tucker points on manifolds. They apply in particular for optimization constrained to compact submanifolds of Rn\mathbb{R}^n, under simpler assumptions.Comment: 33 pages, IMA Journal of Numerical Analysis, 201

    Manifold interpolation and model reduction

    Full text link
    One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.Comment: 37 pages, 4 figures, featured chapter of upcoming "Handbook on Model Order Reduction
    • …
    corecore