301 research outputs found

    Multimodal Three Dimensional Scene Reconstruction, The Gaussian Fields Framework

    Get PDF
    The focus of this research is on building 3D representations of real world scenes and objects using different imaging sensors. Primarily range acquisition devices (such as laser scanners and stereo systems) that allow the recovery of 3D geometry, and multi-spectral image sequences including visual and thermal IR images that provide additional scene characteristics. The crucial technical challenge that we addressed is the automatic point-sets registration task. In this context our main contribution is the development of an optimization-based method at the core of which lies a unified criterion that solves simultaneously for the dense point correspondence and transformation recovery problems. The new criterion has a straightforward expression in terms of the datasets and the alignment parameters and was used primarily for 3D rigid registration of point-sets. However it proved also useful for feature-based multimodal image alignment. We derived our method from simple Boolean matching principles by approximation and relaxation. One of the main advantages of the proposed approach, as compared to the widely used class of Iterative Closest Point (ICP) algorithms, is convexity in the neighborhood of the registration parameters and continuous differentiability, allowing for the use of standard gradient-based optimization techniques. Physically the criterion is interpreted in terms of a Gaussian Force Field exerted by one point-set on the other. Such formulation proved useful for controlling and increasing the region of convergence, and hence allowing for more autonomy in correspondence tasks. Furthermore, the criterion can be computed with linear complexity using recently developed Fast Gauss Transform numerical techniques. In addition, we also introduced a new local feature descriptor that was derived from visual saliency principles and which enhanced significantly the performance of the registration algorithm. The resulting technique was subjected to a thorough experimental analysis that highlighted its strength and showed its limitations. Our current applications are in the field of 3D modeling for inspection, surveillance, and biometrics. However, since this matching framework can be applied to any type of data, that can be represented as N-dimensional point-sets, the scope of the method is shown to reach many more pattern analysis applications

    Digital video moving object segmentation using tensor voting: A non-causal, accurate approach

    Get PDF
    Motion based video segmentation is important in many video processing applications such as MPEG4. This thesis presents an exhaustive, non-causal method to estimate boundaries between moving objects in a video clip. It make use of tensor voting principles. The tensor voting is adapted to allow image structure to manifest in the tangential plane of the saliency map. The technique allows direct estimation of motion vectors from second-order tensor analysis. The tensors make maximal and direct use of the available information by encoding it into the dimensionality of the tensor. The tensor voting methodology introduces a non-symmetrical voting kernel to allow a measure of voting skewness to be inferred. Skewness is found in the third-order tensor in the direction of the tangential first eigenvector. This new concept is introduced as the Tensor Skewness Map or TS map. The TS map gives further information about whether an object is occluding or disoccluding another object. The information can be used to infer the layering order of the moving objects in the video clip. Matched filtering and detection are applied to reduce the TS map into occluding and disoccluding detections. The technique is computationally exhaustive, but may find use in off-line video object segmentation processes. The use of commercial-off-the-shelf Graphic Processor Units is demonstrated to scale well to the tensor voting framework, providing the computational speed improvement required to make the framework realisable on a larger scale and to handle tensor dimensionalities higher than before

    New contributions in overcomplete image representations inspired from the functional architecture of the primary visual cortex = Nuevas contribuciones en representaciones sobrecompletas de imágenes inspiradas por la arquitectura funcional de la corteza visual primaria

    Get PDF
    The present thesis aims at investigating parallelisms between the functional architecture of primary visual areas and image processing methods. A first objective is to refine existing models of biological vision on the base of information theory statements and a second is to develop original solutions for image processing inspired from natural vision. The available data on visual systems contains physiological and psychophysical studies, Gestalt psychology and statistics on natural images The thesis is mostly centered in overcomplete representations (i.e. representations increasing the dimensionality of the data) for multiple reasons. First because they allow to overcome existing drawbacks of critically sampled transforms, second because biological vision models appear overcomplete and third because building efficient overcomplete representations raises challenging and actual mathematical problems, in particular the problem of sparse approximation. The thesis proposes first a self-invertible log-Gabor wavelet transformation inspired from the receptive field and multiresolution arrangement of the simple cells in the primary visual cortex (V1). This transform shows promising abilities for noise elimination. Second, interactions observed between V1 cells consisting in lateral inhibition and in facilitation between aligned cells are shown efficient for extracting edges of natural images. As a third point, the redundancy introduced by the overcompleteness is reduced by a dedicated sparse approximation algorithm which builds a sparse representation of the images based on their edge content. For an additional decorrelation of the image information and for improving the image compression performances, edges arranged along continuous contours are coded in a predictive manner through chains of coefficients. This offers then an efficient representation of contours. Fourth, a study on contour completion using the tensor voting framework based on Gestalt psychology is presented. There, the use of iterations and of the curvature information allow to improve the robustness and the perceptual quality of the existing method. La presente tesis doctoral tiene como objetivo indagar en algunos paralelismos entre la arquitectura funcional de las áreas visuales primarias y el tratamiento de imágenes. Un primer objetivo consiste en mejorar los modelos existentes de visión biológica basándose en la teoría de la información. Un segundo es el desarrollo de nuevos algoritmos de tratamiento de imágenes inspirados de la visión natural. Los datos disponibles sobre el sistema visual abarcan estudios fisiológicos y psicofísicos, psicología Gestalt y estadísticas de las imágenes naturales. La tesis se centra principalmente en las representaciones sobrecompletas (i.e. representaciones que incrementan la dimensionalidad de los datos) por las siguientes razones. Primero porque permiten sobrepasar importantes desventajas de las transformaciones ortogonales; segundo porque los modelos de visión biológica necesitan a menudo ser sobrecompletos y tercero porque construir representaciones sobrecompletas eficientes involucra problemas matemáticos relevantes y novedosos, en particular el problema de las aproximaciones dispersas. La tesis propone primero una transformación en ondículas log-Gabor auto-inversible inspirada del campo receptivo y la organización en multiresolución de las células simples del cortex visual primario (V1). Esta transformación ofrece resultados prometedores para la eliminación del ruido. En segundo lugar, las interacciones observadas entre las células de V1 que consisten en la inhibición lateral y en la facilitación entre células alineadas se han mostrado eficientes para extraer los bordes de las imágenes naturales. En tercer lugar, la redundancia introducida por la transformación sobrecompleta se reduce gracias a un algoritmo dedicado de aproximación dispersa el cual construye una representación dispersa de las imágenes sobre la base de sus bordes. Para una decorrelación adicional y para conseguir más altas tasas de compresión, los bordes alineados a lo largo de contornos continuos están codificado de manera predictiva por cadenas de coeficientes, lo que ofrece una representacion eficiente de los contornos. Finalmente se presenta un estudio sobre el cierre de contornos utilizando la metodología de tensor voting. Proponemos el uso de iteraciones y de la información de curvatura para mejorar la robustez y la calidad perceptual de los métodos existentes
    corecore