784 research outputs found

    Deformed General Relativity and Torsion

    Get PDF
    We argue that the natural framework for embedding the ideas of deformed, or doubly, special relativity (DSR) into a curved spacetime is a generalisation of Einstein-Cartan theory, considered by Stelle and West. Instead of interpreting the noncommuting "spacetime coordinates" of the Snyder algebra as endowing spacetime with a fundamentally noncommutative structure, we are led to consider a connection with torsion in this framework. This may lead to the usual ambiguities in minimal coupling. We note that observable violations of charge conservation induced by torsion should happen on a time scale of 10^3 s, which seems to rule out these modifications as a serious theory. Our considerations show, however, that the noncommutativity of translations in the Snyder algebra need not correspond to noncommutative spacetime in the usual sense.Comment: 20 pages, 1 figure, revtex; expanded sections 3 and 4 for clarity, moved material to appendix B, corrected a few minor error

    The Case of the Missing Gates: Complexity of Jackiw-Teitelboim Gravity

    Get PDF
    The Jackiw-Teitelboim (JT) model arises from the dimensional reduction of charged black holes. Motivated by the holographic complexity conjecture, we calculate the late-time rate of change of action of a Wheeler-DeWitt patch in the JT theory. Surprisingly, the rate vanishes. This is puzzling because it contradicts both holographic expectations for the rate of complexification and also action calculations for charged black holes. We trace the discrepancy to an improper treatment of boundary terms when naively doing the dimensional reduction. Once the boundary term is corrected, we find exact agreement with expectations. We comment on the general lessons that this might hold for holographic complexity and beyond.Comment: 31 pages, 5 figure

    Particle Metropolis-Hastings using gradient and Hessian information

    Full text link
    Particle Metropolis-Hastings (PMH) allows for Bayesian parameter inference in nonlinear state space models by combining Markov chain Monte Carlo (MCMC) and particle filtering. The latter is used to estimate the intractable likelihood. In its original formulation, PMH makes use of a marginal MCMC proposal for the parameters, typically a Gaussian random walk. However, this can lead to a poor exploration of the parameter space and an inefficient use of the generated particles. We propose a number of alternative versions of PMH that incorporate gradient and Hessian information about the posterior into the proposal. This information is more or less obtained as a byproduct of the likelihood estimation. Indeed, we show how to estimate the required information using a fixed-lag particle smoother, with a computational cost growing linearly in the number of particles. We conclude that the proposed methods can: (i) decrease the length of the burn-in phase, (ii) increase the mixing of the Markov chain at the stationary phase, and (iii) make the proposal distribution scale invariant which simplifies tuning.Comment: 27 pages, 5 figures, 2 tables. The final publication is available at Springer via: http://dx.doi.org/10.1007/s11222-014-9510-

    A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions

    Full text link
    We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of spacetime there are typically finitely many topological degrees of freedom as well as topological interactions of Aharonov-Bohm type between massive objects. In order to capture these topological aspects we consider a two-fold central extension of the Galilei group whose Lie algebra possesses an invariant and non-degenerate inner product. Using this inner product we define Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group. The particular extension of the Galilei group we consider is the classical double of a much studied group, the extended homogeneous Galilei group, which is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure of the doubly extended Galilei group, and quantise the Chern-Simons theory using a Hamiltonian approach. Many aspects of the quantum theory are determined by the quantum double of the extended homogenous Galilei group, or Galilei double for short. We study the representation theory of the Galilei double, explain how associated braid group representations account for the topological interactions in the theory, and briefly comment on an associated non-commutative Galilean spacetime.Comment: 38 pages, 1 figure, references update

    Aspects of Multilinear Harmonic Analysis Related to Transversality

    Full text link
    The purpose of this article is to survey certain aspects of multilinear harmonic analysis related to notions of transversality. Particular emphasis will be placed on the multilinear restriction theory for the euclidean Fourier transform, multilinear oscillatory integrals, multilinear geometric inequalities, multilinear Radon-like transforms, and the interplay between them.Comment: 28 pages. Article based on a short course given at the 9th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, 201
    corecore