262 research outputs found

    Emotional Evaluation Of A Product/system

    Get PDF
    Technological advances in products and systems have brought emotional design or emotional engineering to the forefront of research. While several measures to assess emotional expression of products have been developed, the source of the emotion rating of a product or system was often unclear. The purpose of this dissertation is to conduct three studies to examine the causes of emotional ratings and to establish if product-specific emotion rating scales are useful for capturing accurate user evaluations. Three studies were conducted using citrus juicers. Juicers were chosen for several reasons: their wide variety of styles, one self-explanatory purpose (to make juice), and the fact that their benign nature is unlikely to harm participants. Study 1 isolated juicers that had unique emotion profiles to use in the Study 2. Participants rated 41 juicers with fourteen product-specific emotions. Participants predominantly used five of the fourteen emotions in their juicer ratings. Ten juicers with the highest rating consensus, within these five emotions, were chosen for Study 2. Study 2 determined that anthropomorphic tendencies are predictive of emotional ratings. Extreme Anthropomorphism from the Anthropomorphic Tendency Scale (ATS) was used to test individual differences (Sims et al. 2005;Chin et al., 2005). Individuals with low anthropomorphic tendencies were more critical of the products. Sex differences also were analyzed, and significant interactions were found. Women exhibited different preferences for juicers than me. First impression ratings from Study 1 were validated by first impression ratings from Study 2. Finally, Study 3 measured the impact of product interaction on emotional ratings. Participants used seven juicers to make a minimum of four ounces of juice. Pre and post-interaction ratings were compared to determine the effect of interaction on the emotional appraisal of products. The results confirmed that interaction had an impact on affective ratings. As opposed to experienced users, novice users deviated in their pre-post appraisal, especially on aesthetically boring but highly usable products. Novice users based their entire initial appraisal on aesthetics, while experienced users were influenced by their past experience. Humans rely on past experience to recall likes or dislikes. The findings here suggest that aesthetic appraisal of products (or other environments) will remain influenced by past exposure/experience with those or similar products. Thus, only true novices can remain unbiased by past experience for aesthetic appraisal and capture a true \u27first impression\u27. Also, past experience of users should be assessed when conducting research that relies on emotional appraisal of products. These findings may be especially useful in product development where new designs are based on a golden standard, competition, or go through several iterations of testing. The results may be used to guide human factors professionals to develop measures that more accurately capture affective ratings, and thus create more pleasurable products and systems

    Physically Interacting With Four Dimensions

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009People have long been fascinated with understanding the fourth dimension. While making pictures of 4D objects by projecting them to 3D can help reveal basic geometric features, 3D graphics images by themselves are of limited value. For example, just as 2D shadows of 3D curves may have lines crossing one another in the shadow, 3D graphics projections of smooth 4D topological surfaces can be interrupted where one surface intersects another. The research presented here creates physically realistic models for simple interactions with objects and materials in a virtual 4D world. We provide methods for the construction, multimodal exploration, and interactive manipulation of a wide variety of 4D objects. One basic achievement of this research is to exploit the free motion of a computer-based haptic probe to support a continuous motion that follows the \emph{local continuity\/} of a 4D surface, allowing collision-free exploration in the 3D projection. In 3D, this interactive probe follows the full local continuity of the surface as though we were in fact \emph{physically touching\/} the actual static 4D object. Our next contribution is to support dynamic 4D objects that can move, deform, and collide with other objects as well as with themselves. By combining graphics, haptics, and collision-sensing physical modeling, we can thus enhance our 4D visualization experience. Since we cannot actually place interaction devices in 4D, we develop fluid methods for interacting with a 4D object in its 3D shadow image using adapted reduced-dimension 3D tools for manipulating objects embedded in 4D. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D interactive or haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the real-world experience accessible to human beings

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle

    HyperCell

    Get PDF
    This research believes that understanding the relationship between Interactive Architecture and the principles of biology will become a mainstream research area in future architectural design. Aiming towards achieving the goal of “making architecture as organic bodies”, almost all the current digital techniques in architectural design are executed using computational simulation: digital fabrication technologies and physical computing. Based on its’ main biological inspirations, Evolutionary Development Biology (Evo-Devo), this research intends to propose a novel bio-inspired design thinking wherein architecture should become analogs to the growing process of living organisms (Figure 6.1). Instead of being born from static optimization results most of the architecture seems content at aiming for nowadays, this research is looking towards designing dynamic architectural bodies which can adapt to the constantly changing environments and are thus seeking optimization in real-time. In other words, architecture should come “alive” as a living creature in order to actively optimize itself with respect to dynamic environmental conditions and user behavior’ requirements in real-time. Following the notion of “architecture as organic bodies”, six major topics were derived from the publication of “New Wombs: Electric Bodies and Architectural Disorders” (Palumbo, 2000). These topics are aimed at initiating critical discussions between body and space, which, are used here to re-interpret six main traits of being an interactive architecture: Dis-measurement, Uprooting, Fluidity, Visceral Nature, Virtuality, and Sensitivity. These six topics merge diverse key points from aforementioned chapters including outlining the vision of active interacting architecture, the transformation of human bodies under digital culture, the profound biological inspiration from Evo-Devo and the fundamental componential notion of swarm, which leads to the ultimate notion of embodying organic body-like interactive Bio-architecture. Dis-measurement: Acknowledging the premise of “architecture (technology) as an extension of human bodies” proposed by Marshall McLuhan (McLuhan, Understanding Media: The Extensions of Man, 1964), it is, still difficult to explicitly define the boundary of a space, especially in the context of a borderless cyberspace (the Internet). Space in such a context expands more than ever before and thus makes traditional measurements techniques unfeasible. With cyberspace, people can be virtually present in different places at the same time, thus breaking existing physical boundaries of a space. From another point of view, space as an extension of our bodies constantly adapting to environmental conditions and user demands, creates an intimate linkage between physical bodies and spatial bodies. Interaction in such instances can be seen from a micro-scale: between biological cells and intelligent architectural components to the macro-scale: between physical organic bodies and spatial bodies/architectural space. Uprooting: Apart from further extending the “Dis-measurement” idea by directly plugging into cyberspace (the Internet), “Uprooting” is also interpreted as adaptation devoid of any site/location constraints. In other words, the idea of “Uprooting” implies, generating an architecture that can adjust/modify in accordance with its existing surroundings by interactions between its smallest intelligent components like cells in a body searching for dynamic equilibrium. In this case, architecture has no particular reason to be designed as “rooted” on sites. Fluidity: With the neural system inside the body, most of the messages can be transmitted, received and sent within less than a millionth of a second. To envision architecture as an information processor, which has abilities to react to dynamic environmental conditions and user demands, efficient information protocols must be built into such an organic architectural body to create seamless exterior/interior transformations. Visceral Nature: Visceral can be interpreted in the form of an embodied organ. This implies envisioning architecture in the form of a living-entity. It is no longer the case of mimicking a natural form and thus claiming a building to be organic, but rather instigates one to look deeper into the principles of a natural form’s morphogenesis and apply these to generate a truly organic space. Through the study of Evo-Devo, several principles will be applied to generate an interactive organic Bio-architecture. It is thus not an organic looking shape that matters, but the principles behind the shape, which matter. For instance, principles of self-organization, self-assembly, and self-adaptation, providing possibilities of making body-like architectures with multi-directional and multi-modal communications both inside out and outside in. An intelligent architecture, should “live” in the environment just as how the body lives with its’ Visceral Nature. Virtuality: It is impossible to talk about physical space without mentioning virtual space nowadays. From cyberspace, augmented reality to virtual reality, “Virtuality” is related to “interaction” since the beginning and has gradually become an inevitable aspect of our daily lives. In fact, virtual space has to still use constraints from the physical world to enhance experiential aspects. The ultimate goal of virtual reality here is not to end up with a VR helmet and keep constantly being stimulated by electronic messages, but to bring the physical to the virtual and in the process, attempt to search for a dynamic balance between the virtual and real by merging them together. With the assistance of virtual reality, novel unrealistic space can still be realized into creative tangible immersive and fascinating spaces, which, earlier was not possible. Sensitivity: The notion of “architecture is an extension of human bodies”, is crucial to embrace, if we consider enhancing the sensing abilities of the space as a body not only externally but also internally. In a digital space, active sensing can be achieved by attaching specific devices. In an interactive space, like an organic body, the sensing capabilities of the space have to be fast, accurate, intuitive, and predictive. The sensing system should thus not only work externally to sense the surrounding environment but also internally in order to fulfill the users’ demands in time. With such a connection between human bodies and spatial bodies, it should become relatively understandable for the space to know the requirements of the users by means of hand gestures instead of verbal cues. The sensitivity, in this case, should rely on local information distribution as a bottom-up system rather than a top-down centralized demanding structure

    Technical Reports: Langley Aerospace Research Summer Scholars

    Get PDF
    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants

    CGAMES'2009

    Get PDF
    • 

    corecore