2,663 research outputs found

    Augmenting Graphical User Interfaces with Haptic Assistance for Motion-Impaired Operators

    Get PDF
    Haptic assistance is an emerging field of research that is designed to improve human-computer interaction (HCI) by reducing error rates and targeting times through the use of force feedback. Haptic feedback has previously been investigated to assist motion-impaired computer users, however, limitations such as target distracters have hampered its integration with graphical user interfaces (GUIs). In this paper two new haptic assistive techniques are presented that utilise the 3DOF capabilities of the Phantom Omni. These are referred to as deformable haptic cones and deformable virtual switches. The assistance is designed specifically to enable motion-impaired operators to use existing GUIs more effectively. Experiment 1 investigates the performance benefits of the new haptic techniques when used in conjunction with the densely populated Windows on-screen keyboard (OSK). Experiment 2 utilises the ISO 9241-9 point-and-click task to investigate the effects of target size and shape. The results of the study prove that the newly proposed techniques improve interaction rates and can be integrated with existing software without many of the drawbacks of traditional haptic assistance. Deformable haptic cones and deformable virtual switches were shown to reduce the mean number of missed-clicks by at least 75% and reduce targeting times by at least 25%

    Exploring the Front Touch Interface for Virtual Reality Headsets

    Full text link
    In this paper, we propose a new interface for virtual reality headset: a touchpad in front of the headset. To demonstrate the feasibility of the front touch interface, we built a prototype device, explored VR UI design space expansion, and performed various user studies. We started with preliminary tests to see how intuitively and accurately people can interact with the front touchpad. Then, we further experimented various user interfaces such as a binary selection, a typical menu layout, and a keyboard. Two-Finger and Drag-n-Tap were also explored to find the appropriate selection technique. As a low-cost, light-weight, and in low power budget technology, a touch sensor can make an ideal interface for mobile headset. Also, front touch area can be large enough to allow wide range of interaction types such as multi-finger interactions. With this novel front touch interface, we paved a way to new virtual reality interaction methods

    Augmenting User Interfaces with Haptic Feedback

    Get PDF
    Computer assistive technologies have developed considerably over the past decades. Advances in computer software and hardware have provided motion-impaired operators with much greater access to computer interfaces. For people with motion impairments, the main di�culty in the communication process is the input of data into the system. For example, the use of a mouse or a keyboard demands a high level of dexterity and accuracy. Traditional input devices are designed for able-bodied users and often do not meet the needs of someone with disabilities. As the key feature of most graphical user interfaces (GUIs) is to point-and-click with a cursor this can make a computer inaccessible for many people. Human-computer interaction (HCI) is an important area of research that aims to improve communication between humans and machines. Previous studies have identi�ed haptics as a useful method for improving computer access. However, traditional haptic techniques su�er from a number of shortcomings that have hindered their inclusion with real world software. The focus of this thesis is to develop haptic rendering algorithms that will permit motion-impaired operators to use haptic assistance with existing graphical user interfaces. The main goal is to improve interaction by reducing error rates and improving targeting times. A number of novel haptic assistive techniques are presented that utilise the three degrees-of-freedom (3DOF) capabilities of modern haptic devices to produce assistance that is designed speci�- cally for motion-impaired computer users. To evaluate the e�ectiveness of the new techniques a series of point-and-click experiments were undertaken in parallel with cursor analysis to compare the levels of performance. The task required the operator to produce a prede�ned sentence on the densely populated Windows on-screen keyboard (OSK). The results of the study prove that higher performance levels can be i ii achieved using techniques that are less constricting than traditional assistance

    Guidelines for the design of haptic widgets

    Get PDF
    Haptic feedback has been shown to improve user performance in Graphical User Interface (GUI) targeting tasks in a number of studies. These studies have typically focused on interactions with individual targets, and it is unclear whether the performance increases reported will generalise to the more realistic situation where multiple targets are presented simultaneously. This paper addresses this issue in two ways. Firstly two empirical studies dealing with groups of haptically augmented widgets are presented. These reveal that haptic augmentations of complex widgets can reduce performance, although carefully designed feedback can result in performance improvements. The results of these studies are then used in conjunction with the previous literature to generate general design guidelines for the creation of haptic widgets

    Evaluation of cervical posture improvement of children with cerebral palsy after physical therapy based on head movements and serious games

    Get PDF
    Background: This paper presents the preliminary results of a novel rehabilitation therapy for cervical and trunk control of children with cerebral palsy (CP) based on serious videogames and physical exercise. Materials: The therapy is based on the use of the ENLAZA Interface, a head mouse based on inertial technology that will be used to control a set of serious videogames with movements of the head. Methods: Ten users with CP participated in the study. Whereas the control group (n=5) followed traditional therapies, the experimental group (n=5) complemented these therapies with a series of ten sessions of gaming with ENLAZA to exercise cervical flexion-extensions, rotations and inclinations in a controlled, engaging environment. Results: The ten work sessions yielded improvements in head and trunk control that were higher in the experimental group for Visual Analogue Scale, Goal Attainment Scaling and Trunk Control Measurement Scale (TCMS). Significant differences (27% vs. 2% of percentage improvement) were found between the experimental and control groups for TCMS (p<0.05). The kinematic assessment shows that there were some improvements in the active and the passive range of motion. However, no significant differences were found pre- and post-intervention. Conclusions:Physical therapy that combines serious games with traditional rehabilitation could allow children with CP to achieve larger function improvements in the trunk and cervical regions. However, given the limited scope of this trial (n=10) additional studies are needed to corroborate this hypothesis

    Defining acceptable interaction for universal access

    Get PDF
    Many new assistive input systems developed to meet the needs of users with functional impairments fail to make it out of the research laboratory and into regular use by the intended users. This paper examines some of the reasons for this and focuses particular on whether the developers of such systems are focusing on the correct metrics for evaluating the functional attributes of the new input technologies. In particular, the paper focuses on the issue of benchmarking new assistive input systems against a baseline measure of interaction rate that takes allowance of factors such as input success/recognition rate, error rate, correction effort and input time. By addressing each of these measures, a more complete understanding of whether an input system is functionally acceptable can be obtained

    Advanced and natural interaction system for motion-impaired users

    Get PDF
    Human-computer interaction is an important area that searches for better and more comfortable systems to promote communication between humans and machines. Vision-based interfaces can offer a more natural and appealing way of communication. Moreover, it can help in the e-accessibility component of the e-inclusion. The aim is to develop a usable system, that is, the end-user must consider the use of this device effective, efficient and satisfactory. The research's main contribution is SINA, a hands-free interface based on computer vision techniques for motion impaired users. This interface does not require the user to use his upper body limbs, as only nose motion is considered. Besides the technical aspect, user's satisfaction when using an interface is a critical issue. The approach that we have adopted is to integrate usability evaluation at relevant points of the software developmen

    Investigation of Unintentional Movement in People with Cerebral Palsy to Improve Computer Target Aquisition

    Get PDF
    People with Cerebral Palsy (CP) have difficulty using computer pointing devices due to unintentional movement in their upper extremities. Fifty percent of people with CP have impaired arm-hand function which limits their ability to interface with pointing devices and effectively control cursor movement on the computer screen. This thesis involves two studies which utilize an Isometric Joystick in order to access the computer and complete target acquisition tasks. The first study titled "Quantification of Cursor Movement of People with Athetoid and Spastic Cerebral Palsy to Improve Target Acquisition," aims to guide real-time digital filter development for people with athetoid and spastic CP for target acquisition tasks. By investigating the cursor movement measures throughout the target acquisition trajectory we gained a better insight as to when and how to compensate for unintentional movement in people with CP. Results showed that both people with athetoid CP and spastic CP have more difficulty hovering over the target than they did moving to the target, indicating that filter development should focus on the hovering portion of the target acquisition task in order to improve target acquisition time. The second study titled "Customized Control for People with Athetosis and Dystonia to Improve Computer Access," aims to develop a method to prescribe appropriate switch/scanning control for people with athetosis and dystonia as well as to determine if customized switch/scanning control is more effective in completing icon selection tasks than the proportional isometric control. Results of this study suggest that switch/scanning control could be useful in moving on the most direct path to the target as shown by a significantly smaller percent distance error for customized control as compared to proportional isometric control (F(1,6) = 361.2, p < 0.01)
    • …
    corecore