24 research outputs found

    Tunable Versatile High Input Impedance Voltage-Mode Universal Biquadratic Filter Based on DDCCs

    Get PDF
    A high input impedance voltage-mode universal biquadratic filter with three input terminals and seven output terminals is presented. The proposed circuit uses three differential difference current conveyors (DDCCs), four resistors and two grounded capacitors. The proposed circuit can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass, simultaneously. The proposed circuit offers the features of high input impedance, using only grounded capacitors, and orthogonal controllability of resonance angular frequency and quality factor

    ECCCII-Based Current-Mode Universal Filter with Orthogonal Control of w_o and Q

    Get PDF
    This paper presents a new current-mode current-controlled four-input five-output universal filter employing one current-controlled current conveyor (CCCII), one electronically tunable CCCII and two grounded capacitors. The proposed configuration provides lowpass, bandpass, highpass, bandstop and allpass current responses that taken from the high-output impedance terminals, which enable easy cascadability of the current-mode operation. The filter also offers both orthogonal and electronic controls of the natural frequency and the quality factor through adjusting the bias current of the CCCIIs. For realizing all the filter responses, the proposed filter does not require passive component-matching condition and both active and passive sensitivities are low. In addition, a new current-mode current-controlled single-input five-output universal filter can be achieved by using an additional multiple-output minus-type CCCII. The proposed filter is simulated using PSPICE simulations to confirm the theoretical analysis

    High Input Impedance Voltage-Mode Universal Biquadratic Filters With Three Inputs Using Three CCs and Grounding Capacitors

    Get PDF
    Two current conveyors (CCs) based high input impedance voltage-mode universal biquadratic filters each with three input terminals and one output terminal are presented. The first circuit is composed of three differential voltage current conveyors (DVCCs), two grounded capacitors and four resistors. The second circuit is composed of two DVCCs, one differential difference current conveyor (DDCC), two grounded capacitors and four grounded resistors. The proposed circuits can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass filters by the selections of different input voltage terminals. The proposed circuits offer the features of high input impedance, using only grounded capacitors and low active and passive sensitivities. Moreover, the x ports of the DVCCs (or DDCC) in the proposed circuits are connected directly to resistors. This design offers the feature of a direct incorporation of the parasitic resistance at the x terminal of the DVCC (DDCC), Rx, as a part of the main resistance

    Current-mode Biquadratic Universal Filter Design with Two Terminal Unity Gain Cells

    Get PDF
    A grounded parallel lossy active inductor and two current-mode (CM) universal filters are presented in this paper. All the circuits use two voltage followers (VFs) and a current follower (CF). The parallel lossy active inductor includes a grounded capacitor which is attractive in integrated circuit (IC) technology. The CM universal filters have one input and standard three outputs such as band-pass (BP), low-pass (LP) and high-pass (HP) responses. All-pass and notch outputs can be obtained by adding extra one CF. Suggested structures in this paper can be constructed with commercially available active devices such as AD844s. Non-ideal gain and intrinsic X-terminal parasitic resistor effects are examined. Several computer simulations with SPICE program and experimental results by employing AD844s are drawn to verify theoretical ones

    Voltage-Mode Highpass, Bandpass, Lowpass and Notch Biquadratic Filters Using Single DDCC

    Get PDF
    A new voltage-mode multifunction biquadratic filter using one differential difference current conveyor (DDCC), two grounded capacitors and three resistors is presented. The proposed circuit offers the following attractive advantages: realizing highpass, bandpass, lowpass and notch filter functions, simultaneously, from the same circuit configuration; employing grounded capacitors, which is ideal for integration and simpler circuit configuration

    Minimum Configuration Insensitive Multifunctional Current-Mode Biquad Using Current Conveyors and All-Grounded Passive Components

    Get PDF
    This paper proposes a new current conveyorbased high-output impedance single-input three-output current mode filter with minimum configuration. It contains two dual output second generation current conveyors, one third generation dual output current conveyor, and four grounded resistors and capacitors. The circuit simultaneously provides low-pass, band-pass, and high-pass filtering outputs, without any passive component matching conditions and restrictions on input signals. Additionally, the proposed circuit offers following advantages: Minimum active and passive element count, high output and low input impedances, suitable for cascading identical currentmode sections, all passive elements are grounded (no virtual grounding), low natural frequency and Q-factor sensitivities. The influences of non-ideal current conveyors on the proposed circuit are researched in the last

    Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

    Get PDF
    This paper describes the design of a current-mode single-input multiple-output (SIMO) universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF) applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory

    DV-EXCCCII Based Resistor-Less Current-Mode Universal Biquadratic Filter

    Get PDF
    This study aims to present a new resistor-less current-mode multi-input single-output universal filter. The current-mode’s design approach is used to obtain the proposed circuit. This circuit employs a single differential voltage extra-X current controlled current conveyor (DV-EXCCCII) and two grounded capacitors. This multifunction filter circuit offers low-pass, high-pass, all-pass, band-pass, and band-reject filters at a single output terminal without passive component matching constraints. The same circuit topology can obtain all second-order filter functions with different input conditions. The proposed circuit design is electronically adjustable with the bias current of DV-EXCCCII. Because of its high output impedance, this arrangement is suitable for cascading other current-mode circuits. The proposed circuit is simulated by Cadence Spectre with 0.18 µm UMC CMOS technology process parameters at ± 0.9 V supply voltages. The simulation results agree well with the theoretical concept of the proposed circuit

    Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    Get PDF
    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design
    corecore