97 research outputs found

    Proposal for a Standard Representation of Two-Dimensional Gel Electrophoresis Data

    Get PDF
    The global analysis of proteins is now feasible due to improvements in techniques such as two-dimensional gel electrophoresis (2-DE), mass spectrometry, yeast two-hybrid systems and the development of bioinformatics applications. The experiments form the basis of proteomics, and present significant challenges in data analysis, storage and querying. We argue that a standard format for proteome data is required to enable the storage, exchange and subsequent re-analysis of large datasets. We describe the criteria that must be met for the development of a standard for proteomics. We have developed a model to represent data from 2-DE experiments, including difference gel electrophoresis along with image analysis and statistical analysis across multiple gels. This part of proteomics analysis is not represented in current proposals for proteomics standards. We are working with the Proteomics Standards Initiative to develop a model encompassing biological sample origin, experimental protocols, a number of separation techniques and mass spectrometry. The standard format will facilitate the development of central repositories of data, enabling results to be verified or re-analysed, and the correlation of results produced by different research groups using a variety of laboratory techniques

    A contribution to breast cancer cell proteomics: detection of new sequences

    Get PDF
    Ductal infiltrating carcinoma (DIC) of the breast is the most common and potentially aggressive form of cancer. Knowledge of proteomic profiles, attained both in vivo and in vitro, is fundamental to acquire as much information as possible on the proteins expressed in these pathologic conditions. We used the breast cancer cell line 8701-BC, established from a primary DIC, with the aim of contributing to the databases on mammary cancer cells, which in turn will be very useful for the identification of differentially expressed proteins in normal and neoplastic cells. Within an analysis window comprising about 1750 discernible spots, we have at present catalogued 84 protein spots. The proteins for which an identity was assigned were identified essentially using gel comparison, N-terminal (Nt) microseqencing and immune detection. Among the protein spots Nt-microsequenced, sixteen corresponded to known proteins, four resulted as modified, relative to matching sequences deposited on databases, and seven were unknown. These modified or novel sequences are thus of potential interest to the knowledge of breast cancer proteomics and its applications

    Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 year

    The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods

    Get PDF
    The Protein Structure Initiative’s Structural Biology Knowledgebase (SBKB, URL: http://sbkb.org) is an open web resource designed to turn the products of the structural genomics and structural biology efforts into knowledge that can be used by the biological community to understand living systems and disease. Here we will present examples on how to use the SBKB to enable biological research. For example, a protein sequence or Protein Data Bank (PDB) structure ID search will provide a list of related protein structures in the PDB, associated biological descriptions (annotations), homology models, structural genomics protein target status, experimental protocols, and the ability to order available DNA clones from the PSI:Biology-Materials Repository. A text search will find publication and technology reports resulting from the PSI’s high-throughput research efforts. Web tools that aid in research, including a system that accepts protein structure requests from the community, will also be described. Created in collaboration with the Nature Publishing Group, the Structural Biology Knowledgebase monthly update also provides a research library, editorials about new research advances, news, and an events calendar to present a broader view of structural genomics and structural biology

    Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support.

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years

    Symmetry in cancer networks identified: Proposal for multicancer biomarkers

    Get PDF
    One of the most challenging problems in biomedicine and genomics is the identification of disease biomarkers. In this study, proteomics data from seven major cancers were used to construct two weighted protein–protein interaction networks, i.e., one for the normal and another for the cancer conditions. We developed rigorous, yet mathematically simple, methodology based on the degeneracy at –1 eigenvalues to identify structural symmetry or motif structures in network. Utilizing eigenvectors corresponding to degenerate eigenvalues in the weighted adjacency matrix, we identified structural symmetry in underlying weighted protein–protein interaction networks constructed using seven cancer data. Functional assessment of proteins forming these structural symmetry exhibited the property of cancer hallmarks. Survival analysis refined further this protein list proposing BMI, MAPK11, DDIT4, CDKN2A, and FYN as putative multicancer biomarkers. The combined framework of networks and spectral graph theory developed here can be applied to identify symmetrical patterns in other disease networks to predict proteins as potential disease biomarkers
    corecore