6,621 research outputs found

    RRAM variability and its mitigation schemes

    Get PDF
    Emerging technologies such as RRAMs are attracting significant attention due to their tempting characteristics such as high scalability, CMOS compatibility and non-volatility to replace the current conventional memories. However, critical causes of hardware reliability failures, such as process variation due to their nano-scale structure have gained considerable importance for acceptable memory yields. Such vulnerabilities make it essential to investigate new robust design strategies at the circuit system level. In this paper we have analyzed the RRAM variability phenomenon, its impact and variation tolerant techniques at the circuit level. Finally a variation-monitoring circuit is presented that discerns the reliable memory cells affected by process variability.Peer ReviewedPostprint (author's final draft

    Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting

    Full text link
    High-resolution three-dimensional (3D) cardiovascular magnetic resonance (CMR) is a valuable medical imaging technique, but its widespread application in clinical practice is hampered by long acquisition times. Here we present a novel compressed sensing (CS) reconstruction approach using shearlets as a sparsifying transform allowing for fast 3D CMR (3DShearCS). Shearlets are mathematically optimal for a simplified model of natural images and have been proven to be more efficient than classical systems such as wavelets. Data is acquired with a 3D Radial Phase Encoding (RPE) trajectory and an iterative reweighting scheme is used during image reconstruction to ensure fast convergence and high image quality. In our in-vivo cardiac MRI experiments we show that the proposed method 3DShearCS has lower relative errors and higher structural similarity compared to the other reconstruction techniques especially for high undersampling factors, i.e. short scan times. In this paper, we further show that 3DShearCS provides improved depiction of cardiac anatomy (measured by assessing the sharpness of coronary arteries) and two clinical experts qualitatively analyzed the image quality

    In-memory computing on a photonic platform

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors or Oxford Research Archive for Data (https://ora.ox.ac.uk).Collocated data processing and storage are the norm in biological computing systems such as the mammalian brain. As our ability to create better hardware improves, new computational paradigms are being explored beyond von Neumann architectures. Integrated photonic circuits are an attractive solution for on-chip computing which can leverage the increased speed and bandwidth potential of the optical domain, and importantly, remove the need for electro-optical conversions. Here we show that we can combine integrated optics with collocated data storage and processing to enable all-photonic in-memory computations. By employing nonvolatile photonic elements based on the phase-change material, Ge2Sb2Te5, we achieve direct scalar and matrix-vector multiplication, featuring a novel single-shot Write/Erase and a drift-free process. The output pulse, carrying the information of the light-matter interaction, is the result of the computation. Our all-optical approach is novel, easy to fabricate and operate, and sets the stage for development of entirely photonic computers.Engineering and Physical Sciences Research Council (EPSRC)Deutsche Forschungsgemeinschaft (DFG)European Research Council (ERC
    • …
    corecore