14,743 research outputs found

    Aircraft electromagnetic compatibility

    Get PDF
    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting

    Gateway Electromagnetic Environmental Effects (E3) Requirements

    Get PDF
    Electromagnetic Compatibility (EMC) is essential to the success of any vehicle design that incorporates a complex assortment of electronic, electrical, and electromechanical systems and sub-systems that is expected to meet operational and performance requirements while exposed to a changing set of electromagnetic environments composed of both man-made and naturally occurring threats. The combined aspects of these environments are known as Electromagnetic Environmental Effects (E3). The attainment of EMC is accomplished through the application of sound engineering principles and practices that enable a complex vehicle or vehicles to operate successfully when exposed to the effects of its expected and/or specified electromagnetic environments

    Design guidelines for assessing and controlling spacecraft charging effects

    Get PDF
    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined

    Electrostatic discharge control for STDN stations

    Get PDF
    This manual defines the requirements and control methods necessary to control the effect of electrostatic discharges that damage or destroy electronic equipment components. Test procedures for measuring the effectiveness of the control are included

    Feasibility of an electrostatic energy harvesting device for CFCs aircraft

    Get PDF
    A novel energy harvesting concept is proposed for treating local electrostatic energy produced on flying composite aircrafts. This work focuses on the feasibility research on collecting static charges with capacitive collectors. The existing energy harvesting system and the electrification of the typical carbon fibre composites (CFCs) aircraft has been reviewed. The detailed model experiments were then designed to characterize different configurations for electrostatic energy harvesting on aeroplane. In the lab, the static charge was produced by a corona discharging device, and a capacitor or a metal sheet was put in the electric field to collect the charges under four different configurations. After that, the rest results for these configurations were analysed, which is followed by the discussion about the results application on the aircraft. This work has proved that it is feasible to collect the local static electricity on flying aircraft, and it could provide a new direction of energy harvesting system in aviation field

    Sferics

    Get PDF
    The properties of sferics (the electric and magnetic fields generated by electrified clouds and lightning flashes) are briefly surveyed; the source disturbance and the influence of propagation being examined. Methods of observing sferics and their meteorological implications are discussed. It is concluded that close observations of electrostatic and radiation fields are very informative, respectively, upon the charge distribution and spark processes in a cloud; that ground-level sferics stations can accurately locate the positions of individual lightning flashes and furnish valuable knowledge on the properties of the discharges; but that satellite measurements only provide general information on the level of thundery activity over large geographical regions

    Hardening communication ports for survival in electrical overstress environments

    Get PDF
    Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed

    Electrostatic protection of the solar power satellite and rectenna. Part 1: Protection of the solar power satellite

    Get PDF
    Several features of the interactions of the Solar Power Satellite (SPS) with its space environment are examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets are calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Lastly, magnetic shielding of the satellite is considered to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. Subsequent design changes will substantially alter the basic conclusions
    corecore