254,917 research outputs found

    Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family

    Get PDF
    Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin - the transport motor kinesin-1 – is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests that this is not the case. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and subnanometer resolution structure determination, we have visualised conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. Following ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drugbinding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N-terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N-terminus is enzymatically active, and ATP-dependent neck-linker movement and motility is defective although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N-terminus in collaboration with the motor’s structured neck-linker, and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements

    Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers

    Get PDF
    Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon-or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    Surface Mutation Thr34His Facilitates Purification of Haemophilus influenza Carbonic Anhydrase via Metal Affinity Chromatography

    Get PDF
    In order to pursue Haemophilus influenza carbonic anhydrase (HICA) as a potential drug target, easy and efficient purification methods must be developed. While immobilized metal affinity chromatography (IMAC) may be used, complications with polyhistidine tags is a concern. Inspired by the endogenous metal affinity of Escherichia coli β-carbonic anhydrase (ECCA), we suggest that the generation of histidine clusters on HICA’s surface will facilitate its purification by metal affinity chromatography without the potential interference of His-tags. Here we investigate the Thr34His mutation as a method to generate metal affinity in HICA. Since Thr34His is located only 5.3 Å away from His32, the two residues make a vicinal histidine pair that can interact with nickel resin. We report successful generation of Thr34His HICA mutant plasmid via site-directed mutagenesis. To obtain mutant protein for metal affinity chromatography, Thr34His HICA was overexpressed in E. coli cells and isolated as a cell lysate with a concentration of 20.2 ± 0.6 mg/mL. Metal affinity chromatography was performed on the sample, and the chromatography fractions were analyzed by SDS-PAGE in order to assess the metal affinity of the mutant. SDS-PAGE revealed that while Thr34His HICA eluted at low 10 mM and 25 mM concentrations of imidazole, 150 mM imidazole was required to fully elute the mutant. These results suggest that through the generation of surface histidine pairs, HICA can be engineered to have metal affinity and thus be easily purified via IMAC
    • …
    corecore