805 research outputs found

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Experiences in teaching a graduate course on model-driven software development

    Get PDF
    Cataloged from PDF version of article.Model-driven software development (MDSD) aims to support the development and evolution of software intensive systems using the basic concepts of model, metamodel, and model transformation. In parallel with the ongoing academic research, MDSD is more and more applied in industrial practices. After being accepted both by a broad community of researchers and the industry, it is now being introduced in university courses. This article describes the experiences of three years of teaching of the graduate course Model-Driven Software Development at Bilkent University in Turkey. The lessons learned can be useful for peer educators who teach or aim to teach a similar course. © 2011 Copyright Taylor and Francis Group, LLC

    Design of Experiments: An Overview

    Get PDF
    Design Of Experiments (DOE) is needed for experiments with real-life systems, and with either deterministic or random simulation models. This contribution discusses the different types of DOE for these three domains, but focusses on random simulation. DOE may have two goals: sensitivity analysis including factor screening and optimization. This contribution starts with classic DOE including 2k-p and Central Composite designs. Next, it discusses factor screening through Sequential Bifurcation. Then it discusses Kriging including Latin Hyper cube Sampling and sequential designs. It ends with optimization through Generalized Response Surface Methodology and Kriging combined with Mathematical Programming, including Taguchian robust optimization.simulation;sensitivity analysis;optimization;factor screening;Kriging;RSM;Taguchi

    Constrained optimization in simulation: a novel approach.

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation modeling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Kriging metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outperforms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    Constrained Optimization in Simulation: A Novel Approach

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation mod- eling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Krig- ing metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outper- forms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    A Domain-Specific Modeling approach for a simulation-driven validation of gamified learning environments Case study about teaching the mimicry of emotions to children with autism

    Get PDF
    Game elements are rarely explicit when designing serious games or gamified learning activities. We think that the overall design, including instructional design aspects and gamification elements, should be validate by involved experts in the earlier stage of the general design & develop process. We tackle this challenge by proposing a Domain-specific Modeling orientation to our proposals: a metamodeling formalism to capture the gamified instructional design model, and a specific validation process involving domain experts. The validation includes a static verification , by using this formalism to model concrete learning sessions based on concrete informations from real situations described by experts, and a dynamic verification, by developing a simplified simulator for 'execut-ing' the learning sessions scenarios with experts. This propositions are part of the EmoTED research project about a learning application, the mimicry of emotions, for children with ASD. It aims at reinforce face-to-face teaching sessions with therapists by training sessions at home with the supervision of the children's parents. This case-study will ground our proposals and their experimentations

    Reliability approach in spacecraft structures

    Get PDF
    This paper presents an application of the probabilistic approach with reliability assessment on a spacecraft structure. The adopted strategy uses meta-modeling with first and second order polynomial functions. This method aims at minimizing computational time while giving relevant results. The first part focuses on computational tools employed in the strategy development. The second part presents a spacecraft application. The purpose is to highlight benefits of the probabilistic approach compared with the current deterministic one. From examples of reliability assessment we show some advantages which could be found in industrial applications

    Screening Experiments for Simulation: A Review

    Get PDF
    This article reviews so-called screening in simulation; i.e., it examines the search for the really important factors in experiments with simulation models that have very many factors (or inputs). The article focuses on a most efficient and effec- tive screening method, namely Sequential Bifurcation. It ends with a discussion of possible topics for future research, and forty references for further study.Screening;Metamodel;Response Surface;Design

    Integration of SysML with Trade-off Analysis Tools

    Get PDF
    Changes in technology, economy and society create challenges that force us to rethink the way we develop systems. Model-Based Systems Engineering is an approach that can prove catalytic in this new era of systems development. In this work we introduce the concept of the modeling "hub" in order to realize the vision of Model-Based Systems Engineering and especially we focus on the trade-off analysis and design space exploration part of this "hub". For that purpose the capabilities of SysML are extended by integrating it with the trade-off analysis tool Consol-Optcad. The integration framework, the implementation details as well as the tools that were used for this work are described throughout this thesis. The implemented integration is then applied to analyze a very interesting multi-criteria optimization problem concerning power allocation and scheduling of a microgrid
    corecore