247 research outputs found

    Efficient LDO-Assisted DC/DC buck converter for integrated power management system

    Get PDF
    DC-DC Switching Converters; Voltage Linear Regulators; Linear-Assisted DC-DC Voltage Regulators.Postprint (published version

    TECHNIQUES FOR DIGITAL LOW DROPOUT REGULATOR MODELING AND TRANSIENT RESPONSE ENHANCEMENT

    Get PDF
    Low dropout regulators (LDOs) are important components for power management in modern integrated circuits. With the continued scaling down of power supply voltage, digital LDOs have become a more attractive design choice since they avoid the difficulty of designing high-gain amplifiers with low voltage. This thesis investigates techniques for both modeling and enhancement of digital LDO transient response. It discusses the importance of the resistance in the output stage of an LDO, and proposes a simulation model for examining LDO transient response. In addition, the thesis studies circuit techniques to improve LDO transient response. Different LDO circuits are implemented and compared in this study

    On capacitor–less linear–assisted DC–DC regulators as candidate topology for photovoltaic solar facilities

    Get PDF
    Linear-assisted DC/DC converters (or linear-switching hybrid DC/DC converters) consist of a voltage linear regulator (classic NPN or nMOS topologies and LDO) connected in parallel with a switching DC/DC converter. They are good candidates for energy processing in photovoltaic solar facilities. In order to control these hybrid structures, different strategies exist, allowing fixing the switching frequency as a function of some parameters of the linear regulator. This article compares two control strategies that, although can be applied to the same circuital structure of linear-assisted converter, are sensibly different. The first one, reported in previous literature, cancels completely the average current through the linear regulator in steady state to achieve a reduction of the losses. Thus the efficiency of the whole system increases and almost equals the one of the standalone switching converter. The proposed approach, in spite of a slightly increment of linear regulator’s losses, reduces the output ripple due to the crossover distortion of linear regulator output stage.Postprint (published version

    Analysis on Supercapacitor Assisted Low Dropout (SCALDO) Regulators

    Get PDF
    State-of-the-art electronic systems employ three fundamental techniques for DC-DC converters: (a) switch-mode power supplies (SMPS); (b) linear power supplies; (c) switched capacitor (charge pump) converters. In practical systems, these three techniques are mixed to provide a complex, but elegant, overall solution, with energy efficiency, effective PCB footprint, noise and transient performance to suit different electronic circuit blocks. Switching regulators have relatively high end-to-end efficiency, in the range of 70 to 93%, but can have issues with output noise and EMI/RFI emissions. Switched capacitor converters use a set of capacitors for energy storage and conversion. In general, linear regulators have low efficiencies in the range 30 to 60%. However, they have outstanding output characteristics such as low noise, excellent transient response to load current fluctuations, design simplicity and low cost design which are far superior to SMPS. Given the complex situation in switch-mode converters, low dropout (LDO) regulators were introduced to address the equirements of noise-sensitive and fast transient loads in portable devices. A typical commercial off-the-shelf LDO has its input voltage slightly higher than the desired regulated output for optimal efficiency. The approximate efficiency of a linear regulator, if the power consumed by the control circuits is negligible, can be expressed by the ratio of Vo/Vin. A very low frequency supercapacitor circulation technique can be combined with commercial low dropout regulator ICs to significantly increase the end-to-end efficiency by a multiplication factor in the range of 1.33 to 3, compared to the efficiency of a linear regulator circuit with the same input-output voltages. In this patented supercapacitor-assisted low dropout (SCALDO) regulator technique developed by a research team at the University of Waikato, supercapacitors are used as lossless voltage droppers, and the energy reuse occurs at very low frequencies in the range of less than ten hertz, eliminating RFI/EMI concerns. This SCALDO technique opens up a new approach to design step-down, DC-DC converters suitable for processor power supplies with very high end-to-end efficiency which is closer to the efficiencies of practical switching regulators, while maintaining the superior output specifications of a linear design. Furthermore, it is important to emphasize that the SCALDO technique is not a variation of well-known switched capacitor DC-DC converters. In this thesis, the basic SCALDO concept is further developed to achieve generalised topologies, with the relevant theory that can be applied to a converter with any input-output step-down voltage combination. For these generalised topologies, some important design parameters, such as the number of supercapacitors, switching matrix details and efficiency improvement factors, are derived to form the basis of designing SCALDO regulators. With the availability of commercial LDO ICs with output current ratings up to 10 A, and thin-prole supercapacitors with DC voltage ratings from 2.3 to 5.5 V, several practically useful, medium-current SCALDO prototypes: 12V-to-5V, 5V-to-2V, 5.5V-to-3.3V have been developed. Experimental studies were carried out on these SCALDO prototypes to quantify performance in terms of line regulation, load regulation, efficiency and transient response. In order to accurately predict the performance and associated waveforms of the individual phases (charge, discharge and transition) of the SCALDO regulator, Laplace transform-based theory for supercapacitor circulation is developed, and analytical predictions are compared with experimental measurements for a 12V-to-5V prototype. The analytical results tallied well with the practical waveforms observed in a 12V-to-5V converter, indicating that the SCALDO technique can be generalized to other versatile configurations, and confirming that the simplified assumptions used to describe the circuit elements are reasonable and justifiable. After analysing the performance of several SCALDO prototypes, some practical issues in designing SCALDO regulators have been identified. These relate to power losses and implications for future development of the SCALDO design

    Architectural & circuit level techniques to improve energy efficiency of high speed serial links

    Get PDF
    High performance computing and communication are two key aspects of all information processing systems. With aggressive scaling of silicon technology enabling integration of a large number of transistors in a small area, managing power and thermal reliability has become very challenging. While lowering the power needed for performing computation has been the prime focus for decades, energy consumed for data transfer has recently become a major bottleneck especially in high performance applications. The focus of this thesis is on improving energy efficiency of communication links by exploring design techniques at both the architectural and circuit levels. In the first part of this work, we propose a time-based equalization scheme to implement transmit de-emphasis in voltage-mode output drivers. Using two-level pulse-width modulation, it overcomes the tradeoff between impedance matching, output swing, and de-emphasis resolution in conventional voltage-mode drivers. A prototype PWM-based 5 \,Gb/s voltage-mode transmitter was implemented in a 90 \,nm CMOS process and characterized across different channels and output swings to demonstrate the effectiveness of proposed techniques. The horizontal/vertical eye openings (BER=10−12\rm 10^{-12}) at the ends of 60 \,inch and 96 \,inch stripline channels are 78 \,mV/0.6 \,UI and 8 \,mV/0.3 \,UI, respectively. This transmitter achieves an energy efficiency of 3.1 \,mW/Gb/s while compensating for 16-28 \,dB channel loss, which compares favorably with the state-of-the-art. In the second part, techniques to improve energy efficiency of a complete transceiver are presented. The transmitter employs a novel partially segmented voltage-mode output driver to lower power consumption in pre-drivers during 2-tap FIR equalization. The receiver implements a low power half-rate clock and data recovery with the proposed ring PLL based multi-phase sampling clock generation in CDR loop and charge-based sampling and deserialization. These techniques are verified using the measured results obtained from a 14Gb/s transceiver prototype. Transmitter achieves an energy efficiency of 0.89 \,mW/Gb/s while securing a 0.36 \,UI sampling time margin with BER=10−12\rm{BER=10^{-12}} at the end of the channel with 11 \,dB loss at Nyquist frequency. The receiver recovers sampling clock with 1.8 \,psrms\rm{ps_{rms}} long term absolute jitter while recovering 14 \,Gb/s data at BER=10−12\rm{BER=10^{-12}}. The receiver achieves an energy efficiency of 1.69 \,mW/Gb/s. Transmitter and receiver share an LC PLL, which achieves 0.605 \,psrms\rm{ps_{rms}} integrated jitter at 7 \,GHz output with an energy efficiency of 0.5 \,mW/GHz. The transceiver as a whole achieves an energy efficiency of 2.8 \,mW/Gb/s

    On energy processing with linear–assisted DC/DC converters

    Get PDF
    Abstract—Linear-assisted DC/DC converters (or linears-witching hybrid DC/DC converters) consist of a voltage linear regulator (classic NPN or nMOS topologies and LDO) connected in parallel with a switching DC/DC converter. In order to control these hybrid structures, different strategies exist, allowing to fix the switching frequency as a function of some parameters of the linear regulator. This article compares two control strategies that, although can be applied to the same circuital structure of linear-assisted converter, are sensibly different. The first one, reported in previous literature, cancels completely the average current through the linear regulator in steady state to achieve a reduction of the losses. Thus the efficiency of the whole system increases and almost equals the one of the standalone switching converter. The proposed approach, in spite of a slightly increment of linear regulator’s losses, reduces the output ripple due to the crossover distortion of linear regulator output stage.Postprint (published version

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Analysis and Design of High Speed Serial Interfaces for Automotive Applications

    Get PDF
    The demand for an enriched end-user experience and increased performance in next generation electronic applications is never ending, and it is a common trend for a wide spectrum of applications owing to different markets, like computing, mobile communication and automotive. For this reason High Speed Serial Interface have become widespread components for nowadays electronics with a constant demand for power reduction and data rate increase. In the frame of gigabit serial systems, the work discussed in this thesis develops in two directions: on one hand, the aim is to support the continuous data rate increase with the development of novel link modeling approaches that will be employed for system level evaluation and as support in the design and characterization phases. On the other hand, the design considerations and challenges in the implementation of the transmitter, one of the most delicate blocks for the signal integrity performance of the link, are central. The first part of the activity regarding link performance predictions lead to the development of an enhanced statistical simulation approach, capable to account for the transmitter waveform shape in the ISI analysis, a characteristic that is missed by the available state-ofthe- art simulation approaches. The proposed approach has been extensively tested by comparison with traditional simulation approaches (Spice-like simulators) and validated against experimental characterization of a test system, with satisfactory results. The second part of the activity consists in the design of a high speed transmitter in a deeply scaled CMOS technology, spanning from the concept of the circuit, its implementation and characterization. Targets of the design are to achieve a data rate of 5 Gb/s with a minimum voltage swing of 800 mV, thus doubling the data rate of the current transmitter implementation, and reduce the power dissipation adopting a voltage mode architecture. The experimental characterization of the fabricated lot draws a twofold picture, with some of the performance figures showing a very good qualitative and quantitative agreement with pre-silicon simulations, and others revealing a poor performance level, especially for the eye diagram. Investigation of the root causes by the analysis of the physical silicon design, of the bonding scheme of the prototypes and of the pre-silicon simulations is reported. Guidelines for the redesign of the circuit are also given.Nel panorama delle applicazioni elettroniche il miglioramento delle performance di un prodotto da una generazione alla successiva ha lo scopo di offrire all\u2019utilizzatore finale nuove funzioni e migliorare quelle esistenti. Negli ultimi anni grazie al costante avanzamento della tecnologia integrata, si \ue8 assistito ad un enorme sviluppo della capacit\ue0 computazionale dei dispositivi in tutti i segmenti di mercato, quali ad esempio l\u2019information technology, la comunicazione mobile e l\u2019automotive. La conseguente necessit\ue0 di mettere in comunicazione dispostivi diversi all\u2019interno della stessa applicazione e di traferire grosse quantit\ue0 di dati ha provocato una capillare diffusione delle interfacce seriali ad alta velocit\ue0, o High Speed Serial Interfaces (HSSIs). La necessit\ue0 di ridurre il consumo di potenza e aumentare il bit rate per questo tipo di applicazioni \ue8 diventata dunque un ambito di ricerca di estremo interesse. Il lavoro discusso in questa tesi si colloca nell\u2019ambito della trasmissione di dati seriali a bit rate superiori ad 1Gb/s e si sviluppa in due direzioni: da un lato, a sostegno del continuo aumento del bit rate nelle nuove generazioni di interfacce, \ue8 stato affrontato lo sviluppo di nuovi approcci di modellazione del sistema, che possano essere impiegati nella valutazione delle prestazioni dell\u2019interfaccia e a supporto delle fasi di progettazione e di caratterizzazione. Dall\u2019altro lato, si \ue8 focalizzata l\u2019attenzione sulle sfide e sulle problematiche inerenti il progetto di uno dei blocchi pi\uf9 delicati per le prestazioni del sistema, il trasmettitore. La prima parte della tesi ha come oggetto lo sviluppo di un approccio di simulazione statistico innovativo, in grado di includere nell\u2019analisi degli effetti dell\u2019interferenza di intersimbolo anche la forma d\u2019onda prodotta all\u2019uscita del trasmettitore, una caratteristica che non \ue8 presente in altri approcci di simulazione proposti in letteratura. La tecnica proposta \ue8 ampiamente testata mediante il confronto con approcci di simulazione tradizionali (di tipo Spice) e mediante il confronto con la caratterizzazione sperimentale di un sistema di test, con risultati pienamente soddisfacenti. La seconda parte dell\u2019attivit\ue0 riguarda il progetto di un trasmettitore integrato high speed in tecnologia CMOS a 40nm e si estende dallo studio di fattibilit\ue0 del circuito fino alla sua realizzazione e caratterizzazione. Gli obiettivi riguardano il raggiungimento di un bit rate pari a 5 Gb/s, raddoppiando cos\uec il bit rate dell\u2019attuale implementazione, e di una tensione differenziale di uscita minima di 800mV (picco-picco) riducendo allo stesso tempo la potenza dissipata mediante l\u2019adozione di una architettura Voltage Mode. I risultati sperimentali ottenuti dal primo lotto fabbricato non delineano un quadro univoco: alcune performance mostrano un ottimo accordo qualitativo e quantitativo con le simulazioni pre-fabbricazione, mentre prestazioni non soddisfacenti sono state ottenute in particolare per il diagramma ad occhio. Grazie all\u2019analisi del layout del prototipo, del bonding tra silicio e package e delle simulazioni pre-fabbricazione \ue8 stato possibile risalire ai fattori responsabili del degrado delle prestazioni rispetto alla previsioni pre-fabbricazione, permettendo inoltre di delineare le linee guida da seguire nella futura progettazione di un nuovo prototipo

    Toward realizing power scalable and energy proportional high-speed wireline links

    Get PDF
    Growing computational demand and proliferation of cloud computing has placed high-speed serial links at the center stage. Due to saturating energy efficiency improvements over the last five years, increasing the data throughput comes at the cost of power consumption. Conventionally, serial link power can be reduced by optimizing individual building blocks such as output drivers, receiver, or clock generation and distribution. However, this approach yields very limited efficiency improvement. This dissertation takes an alternative approach toward reducing the serial link power. Instead of optimizing the power of individual building blocks, power of the entire serial link is reduced by exploiting serial link usage by the applications. It has been demonstrated that serial links in servers are underutilized. On average, they are used only 15% of the time, i.e. these links are idle for approximately 85% of the time. Conventional links consume power during idle periods to maintain synchronization between the transmitter and the receiver. However, by powering-off the link when idle and powering it back when needed, power consumption of the serial link can be scaled proportionally to its utilization. This approach of rapid power state transitioning is known as the rapid-on/off approach. For the rapid-on/off to be effective, ideally the power-on time, off-state power, and power state transition energy must all be close to zero. However, in practice, it is very difficult to achieve these ideal conditions. Work presented in this dissertation addresses these challenges. When this research work was started (2011-12), there were only a couple of research papers available in the area of rapid-on/off links. Systematic study or design of a rapid power state transitioning in serial links was not available in the literature. Since rapid-on/off with nanoseconds granularity is not a standard in any wireline communication, even the popular test equipment does not support testing any such feature, neither any formal measurement methodology was available. All these circumstances made the beginning difficult. However, these challenges provided a unique opportunity to explore new architectural techniques and identify trade-offs. The key contributions of this dissertation are as follows. The first and foremost contribution is understanding the underlying limitations of saturating energy efficiency improvements in serial links and why there is a compelling need to find alternative ways to reduce the serial link power. The second contribution is to identify potential power saving techniques and evaluate the challenges they pose and the opportunities they present. The third contribution is the design of a 5Gb/s transmitter with a rapid-on/off feature. The transmitter achieves rapid-on/off capability in voltage mode output driver by using a fast-digital regulator, and in the clock multiplier by accurate frequency pre-setting and periodic reference insertion. To ease timing requirements, an improved edge replacement logic circuit for the clock multiplier is proposed. Mathematical modeling of power-on time as a function of various circuit parameters is also discussed. The proposed transmitter demonstrates energy proportional operation over wide variations of link utilization, and is, therefore, suitable for energy efficient links. Fabricated in 90nm CMOS technology, the voltage mode driver, and the clock multiplier achieve power-on-time of only 2ns and 10ns, respectively. This dissertation highlights key trade-off in the clock multiplier architecture, to achieve fast power-on-lock capability at the cost of jitter performance. The fourth contribution is the design of a 7GHz rapid-on/off LC-PLL based clock multi- plier. The phase locked loop (PLL) based multiplier was developed to overcome the limita- tions of the MDLL based approach. Proposed temperature compensated LC-PLL achieves power-on-lock in 1ns. The fifth and biggest contribution of this dissertation is the design of a 7Gb/s embedded clock transceiver, which achieves rapid-on/off capability in LC-PLL, current-mode transmit- ter and receiver. It was the first reported design of a complete transceiver, with an embedded clock architecture, having rapid-on/off capability. Background phase calibration technique in PLL and CDR phase calibration logic in the receiver enable instantaneous lock on power-on. The proposed transceiver demonstrates power scalability with a wide range of link utiliza- tion and, therefore, helps in improving overall system efficiency. Fabricated in 65nm CMOS technology, the 7Gb/s transceiver achieves power-on-lock in less than 20ns. The transceiver achieves power scaling by 44x (63.7mW-to-1.43mW) and energy efficiency degradation by only 2.2x (9.1pJ/bit-to-20.5pJ/bit), when the effective data rate (link utilization) changes by 100x (7Gb/s-to-70Mb/s). The sixth and final contribution is the design of a temperature sensor to compensate the frequency drifts due to temperature variations, during long power-off periods, in the fast power-on-lock LC-PLL. The proposed self-referenced VCO-based temperature sensor is designed with all digital logic gates and achieves low supply sensitivity. This sensor is suitable for integration in processor and DRAM environments. The proposed sensor works on the principle of directly converting temperature information to frequency and finally to digital bits. A novel sensing technique is proposed in which temperature information is acquired by creating a threshold voltage difference between the transistors used in the oscillators. Reduced supply sensitivity is achieved by employing junction capacitance, and the overhead of voltage regulators and an external ideal reference frequency is avoided. The effect of VCO phase noise on the sensor resolution is mathematically evaluated. Fabricated in the 65nm CMOS process, the prototype can operate with a supply ranging from 0.85V to 1.1V, and it achieves a supply sensitivity of 0.034oC/mV and an inaccuracy of ±0.9oC and ±2.3oC from 0-100oC after 2-point calibration, with and without static nonlinearity correction, respectively. It achieves a resolution of 0.3oC, resolution FoM of 0.3(nJ/conv)res2 , and measurement (conversion) time of 6.5Όs
    • 

    corecore