9 research outputs found

    Apport de l’IRM structurelle multimodale dans la chirurgie d’épilepsie : le cas de l’épilepsie insulaire

    Full text link
    L’épilepsie insulaire (ÉI) est une forme rare d’épilepsie focale qui, en raison des défis liés à son diagnostic, est difficilement cernable. De plus, la prise en charge des patients avec ÉI s’avère complexifiée par le fait que cette pathologie est fréquemment résistante aux médicaments anti-crises. Pour ces cas médico-réfractaires, la chirurgie insulaire est une option viable. Cela dit, les patients subissant une telle intervention développent fréquemment des déficits neurologiques postopératoires; heureusement, la grande majorité de ceux-ci récupèrent complètement et rapidement. Or, le mécanisme sous-tendant ce singulier rétablissement fonctionnel demeure à ce jour mal compris. Deux modalités modernes d’IRM structurelle, soit l’analyse d’épaisseur corticale et la tractographie, ont permis, dans les dernières années, de décrire les altérations architecturales caractéristiques et potentiellement diagnostiques de divers types d’épilepsie ainsi que de caractériser les remodelages plastiques qui suivent la chirurgie de l’épilepsie extra-insulaire. Cependant, à ce jour, aucune étude ne s’est encore penchée sur le cas de l’ÉI. De ce fait, les études qui constituent cette thèse exploitent l’IRM structurelle afin, d’une part, de dépeindre les altérations d’épaisseur du cortex et de connectivité de matière blanche associées à l’ÉI et, d’autre part, de définir les réarrangements de connectivité subséquents à la chirurgie insulaire pour contrôle épileptique. Les deux premières études de cette thèse ont révélé que l’ÉI était associée à un pattern majoritairement ipsilatéral d’atrophie corticale et d’hyperconnectivité impliquant principalement des sous-régions insulaires et des régions connectées à l’insula. De manière intéressante, la topologie de ces changements correspondait, au moins en partie, à celle du réseau épileptique de l’ÉI. Ensuite, la troisième étude visait à décrire, par le biais d’une méta-analyse, l’histoire naturelle postopératoire des patients subissant une chirurgie pour ÉI. Cette analyse a, entre autres, confirmé que cette chirurgie était efficace (66.7% de disparition des crises) et qu’elle était fréquemment accompagnée de complications neurologiques (42.5%) qui, dans la plupart des cas, étaient transitoires (78.7% des complications) et récupéraient entièrement dans les trois mois postopératoires (91.6% des complications transitoires). Finalement, la quatrième étude a révélé que la chirurgie pour ÉI était suivie d’altérations de connectivité diffuses et bilatérales. Notamment, les connexions présentant une augmentation de connectivité concernaient particulièrement des régions localisées soit près de la cavité chirurgicale ou dans l’hémisphère controlatéral à l’intervention. De plus, la majorité de ces renforcements structurels se sont produits dans les six premiers mois suivant la chirurgie, un délai comparable à celui durant lequel la majeure partie de la récupération fonctionnelle postopératoire a été observée dans notre méta-analyse. En somme, nos résultats suggèrent que les altérations morphologiques en lien avec l’ÉI peuvent correspondre à son réseau épileptique sous-jacent. La topologie de ces changements pourrait constituer un biomarqueur structurel diagnostique qui aiderait à la reconnaissance de l’ÉI et, concomitamment, favoriserait possiblement un traitement chirurgical plus adapté et plus efficace. De plus, les augmentations de connectivité postopératoires pourraient correspondre à des réponses neuroplastiques permettant de prendre en charge les fonctions altérées par la chirurgie. Nos constats ont ainsi contribué à la caractérisation des mécanismes étayant la singulière récupération fonctionnelle accompagnant la chirurgie pour ÉI. À plus grande échelle, nos travaux offrent un aperçu du potentiel de l’IRM structurelle à assister au diagnostic de l’épilepsie focale ainsi qu’à participer à la description des changements plastiques subséquents à une résection neurochirurgicale.Insular epilepsy (IE) is a rare type of focal epilepsy that is difficult to diagnose. In addition to the challenging nature of IE detection, management of patients with this condition is complicated by the tendency of insular seizures to be resistant to anti-seizure medications. For such medically refractory cases, insular surgery constitutes a viable and long-lasting therapeutic option. That said, patients who undergo an insular resection for seizure control frequently develop postoperative neurological deficits; fortunately, most of these impairments recover fully and rapidly. While this favorable postoperative course contributes to improving the outcome of IE surgery, the mechanism underlying the functional recovery remains unknown. Two contemporary structural MRI modalities, namely cortical thickness analysis and tractography, have recently been used to describe characteristic structural alterations of focal epilepsies and to elucidate the postoperative plastic remodeling associated with surgery for extra-insular epilepsy. While these analyses added to our understanding of several localization-related epilepsies, none specifically studied IE. In this thesis, we exploit structural MRI techniques to, first, depict the alterations of cortical thickness and white matter connectivity in IE and, second, define the progressive rearrangements that follow insular surgery for epilepsy. The first two studies of the current thesis showed that IE is associated with a primarily ipsilateral pattern of cortical thinning and hyperconnectivity that mainly involves insular subregions and insula-connected regions. Interestingly, the topology of these changes corresponded, at least in part, to the epileptic network of IE. Furthermore, the third study aimed to describe, via a meta-analysis, the postoperative outcome of patients undergoing surgery for IE. Among other findings, the analysis revealed that insular surgery was effective (66.7% seizure freedom rate) but was associated with a significant risk of neurological complications (42.5%) which, in most cases, were transient (78.7% of all complications) and recovered fully within three months (91.6% of transient complications). Finally, the fourth study showed that surgery for IE was followed by a diffuse pattern of bilateral structural connectivity changes. Notably, connections exhibiting an increase in connectivity were specifically located near the surgical cavity and in the contralateral healthy hemisphere. In addition, the majority of the structural strengthening occurred in the first six months following surgery, a time course that is consistent with the short delay during which most of the postoperative functional recovery was observed in our meta-analysis. Our results suggest that the morphological alterations in IE may reflect its underlying epileptic network. The topology of these changes may constitute a structural biomarker that could help diagnose IE more readily and, concomitantly, potentially enable a more targeted and more effective surgical treatment. Moreover, the postoperative increases in connectivity may be compatible with compensatory neuroplastic responses, a process that arose to recoup the functions of the injured insular cortex. Our findings have therefore contributed to the characterization of the driving process that supports the striking functional recovery seen following surgery for IE. On a larger scale, our work provides insights into the potential of structural MRI to assist in the diagnosis of focal epilepsy and to describe plastic changes following neurosurgical resections

    Predictors of Cognitive Recovery in Paediatric Autoimmune Encephalitis

    Get PDF
    Paediatric autoimmune encephalitis (AE) is an inflammatory brain disease associated with acute cognitive and behavioural difficulties, seizures, magnetic resonance imaging (MRI) and electroencephalography abnormalities. Some children with AE experience difficulties years after acute illness, but identifying those at high risk is difficult; factors able to predict them are needed. Advanced neuroimaging methods including magnetoencephalography (MEG) and quantitative measures of structural magnetic resonance imaging (MRI; for example cortical thickness) are promising tools with which to predict neurobehavioural outcome. This thesis developed and investigated the ability of these techniques to predict cognitive and behavioural outcome in children with AE. Children with autoimmune encephalitis (including anti-NMDA and ADEM) were recruited at least 18 months after initial presentation; along with typically developing children. Participants underwent MRI scans; MEG recordings at rest and during an auditory oddball task; and completed neuropsychological assessments. Through a series of experiments, long-term psychological outcomes were examined, and brain structure and function interrogated. Overall, the thesis found that behavioural assessments highlighted long-term difficulties in children with AE. MRI analyses showed brain cortical thinning in the left superior occipital and parietal gyri, and orbitofrontal cortex. Functional network analyses highlighted alterations within the delta frequency, with lower efficiency in information transmission within local connections. However, network measures, cortical thickness and auditory evoked responses did not predict neurobehavioural outcomes. The present findings show that these neuroimaging approaches are applicable in paediatric AE and enhance our understanding of long-term alterations, however, it is not established whether they can predict long-term difficulties. The findings highlight opportunities to further develop neuroimaging approaches that can potentially uncover clinically useful findings, and will be relevant for approaches that will better identify children with AE who warrant ongoing surveillance and early intervention to ameliorate long-term consequences of early life brain inflammation

    Event-related potentials in patients with refractory epilepsy

    Get PDF

    Medical-Data-Models.org:A collection of freely available forms (September 2016)

    Full text link
    MDM-Portal (Medical Data-Models) is a meta-data repository for creating, analysing, sharing and reusing medical forms, developed by the Institute of Medical Informatics, University of Muenster in Germany. Electronic forms for documentation of patient data are an integral part within the workflow of physicians. A huge amount of data is collected either through routine documentation forms (EHRs) for electronic health records or as case report forms (CRFs) for clinical trials. This raises major scientific challenges for health care, since different health information systems are not necessarily compatible with each other and thus information exchange of structured data is hampered. Software vendors provide a variety of individual documentation forms according to their standard contracts, which function as isolated applications. Furthermore, free availability of those forms is rarely the case. Currently less than 5 % of medical forms are freely accessible. Based on this lack of transparency harmonization of data models in health care is extremely cumbersome, thus work and know-how of completed clinical trials and routine documentation in hospitals are hard to be re-used. The MDM-Portal serves as an infrastructure for academic (non-commercial) medical research to contribute a solution to this problem. It already contains more than 4,000 system-independent forms (CDISC ODM Format, www.cdisc.org, Operational Data Model) with more than 380,000 dataelements. This enables researchers to view, discuss, download and export forms in most common technical formats such as PDF, CSV, Excel, SQL, SPSS, R, etc. A growing user community will lead to a growing database of medical forms. In this matter, we would like to encourage all medical researchers to register and add forms and discuss existing forms
    corecore