1,639 research outputs found

    Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements

    High performance position control for permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, development time and associated costs are reduced. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This document presents the design and implementation of a position control system for permanent magnet synchronous drives, including a review and comparison of various related works about non-linear control systems applied to this type of machine. The overall electric drive control system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on a microcontroller and analogue circuits connected to it. The dsPIC33FJ32MC204 is used as the target processor to implement the control algorithms. The electric drive model is developed using elements existing in the Proteus VSM library. As in any high performance electric drive system, field oriented control is applied to achieve accurate torque control. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux are also simulated. Comparisons between the two control schemes are carried out for speed and position using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the hybrid fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present. Finally, the speed controllers are implemented and evaluated physically in a testbed based on a brushless DC motor, with the control algorithms implemented on a dsPIC30F2010. The comparisons carried out for the speed controllers are consistent for both simulation and physical implementation

    Analysis of electro-mechanical interaction in aircraft generator systems

    Get PDF

    Influence of control structures and load parameters on performance of a pseudo direct drive

    Get PDF
    The paper describes an in-depth and systematic analysis of a pseudo direct drive permanent magnet machine in closed loop control. Due to the torque being transmitted from the high-speed rotor (HSR) to the low-speed rotor (LSR), through a relatively low stiffness magnetic gear with non-linear characteristics, speed oscillations appear in the drive output with a conventional proportional integral (PI) controller. Therefore two candidate controllers have been proposed as an alternative to the PI control and all controllers have been optimally tuned with a genetic algorithm against a defined criterion. Furthermore, closed loop models are established in the complex frequency domain to determine the system damping and the cause of the oscillations. Consequently, the best controller structure that improves the dynamic behaviour of the system in terms of speed tracking and disturbance rejection could be identified, based on the frequency domain analysis. Experimental results are presented to validate the analysis and the proposed control technique

    Output-feedback design for non-smooth mechanical systems : control synthesis and experiments

    Get PDF
    In this thesis, the focus is on two control problems for non-smooth systems. Firstly, the disturbance attenuation problem for piecewise linear (PWL) and piecewise affine (PWA) systems is studied. Here, we focus on applications in the field of perturbed flexible mechanical systems with PWL restoring characteristics. Secondly, the stabilization problem for Lur’e type systems with set-valued nonlinearities is examined. In the latter context, the focus is on the application area of mechanical systems with set-valued friction characteristics, where the friction is non-collocated with the control action. In this thesis, in order to deal with both the disturbance attenuation problem and the stabilization problem, observer-based output-feedback control strategies are proposed. More specifically, the disturbance attenuation problem for perturbed PWL and PWA mechanical systems is an important control problem. Namely, the attenuation of the disturbances acting on these systems is important because it avoids damages to the structures and allows for increased system performance. Classical examples of mechanical systems with PWL and PWA restoring characteristics are tower cranes, suspension bridges, snubbers on solar panels on satellites, floating platforms for oil exploration, etc. Therefore, a controller design strategy is proposed for a class of perturbed PWL/PWA systems based on the notions of convergence and input-to-state convergence. The control design aims at the performance of such control designs in terms of disturbance attenuation for the specific class of periodic disturbances and the more general class of bounded disturbances. Roughly speaking, a system that is convergent, has, for each bounded disturbance, a unique globally asymptotically stable steady-state solution that is bounded for all time. A system is input-to-state convergent for a class of bounded disturbances if it is convergent and ISS with respect to the system’s unique steady-state solution. The input-to-state convergence property is instrumental in constructing output-feedback schemes. In the present work, we render a system convergent by means of feedback. To guarantee the practical applicability of the convergence-based controllers, a saturation constraint is proposed that provides a guaranteed upper bound on the control input, given an upper bound for the disturbances and a set of initial conditions. Next, an ultimate bound for the system state given a bound on the disturbances is proposed. Finally, performance measures based on computed steady-state responses for a specific class of disturbances (in our case harmonic disturbances) are presented. The motivation for the choice of harmonic disturbances lies in the fact that in engineering practice many disturbances can be approximated by a finite sum of harmonic signals (or are even harmonic as in systems with mass-unbalance). The ultimate objective of this part of the thesis is the implementation of the controller design strategy in an experimental environment, which implies that only measurements of a limited number of state variables will be available. Therefore, observers for PWL/PWA systems are used and a result that combines the controller and the observer in an outputfeedback strategy is provided. The convergent-based controller design strategy is applied to an experimental piecewise linear system and its effectiveness is shown in experiments. The stabilization of mechanical systems with friction is another challenging unsolved control problem because the presence of friction can induce unwanted phenomena such as self-sustained vibrations, chatter and squeal. These phenomena are unwanted in many engineering applications because they can destabilize a system and/or limit the system performance. Classical examples of mechanical systems with friction are industrial robots, drilling rigs, turbine blade dampers, accurate mirror positioning systems on satellites, printers and many more. Therefore, a control design strategy is proposed for a class of discontinuous systems; namely Lur’e systems with set-valued mappings. Here the focus is on the application area of mechanical systems with discontinuous friction. These systems exhibit unwanted (stick-slip) limit cycling which we aim to avoid entirely by the control design. In this work, we consider the problem of noncollocated friction and actuation, which rules out the application of common friction compensation techniques. The control design strategy proposed here is based on the notion of passivity and the Popov criterion. In addition to that, it is shown that the resulting closed-loop system is robust with respect to uncertainties in the discontinuous friction model under some mild constraints for the model that describes the friction. Once again, the aim is to implement this strategy on a mechanical experimental set-up with limited measurements. Therefore, an observer for Lur’e systems with multi-valued mappings is used as a state estimator and a result that combines the controller and the observer in an output-feedback strategy is provided. The passivity-based controller design strategy is implemented on a dynamic rotor system with friction in one of its components. The implemented output-feedback controller is evaluated in both simulations and experiments. Generally speaking, to show the strengths, weaknesses and potential of output-feedback controllers beyond their theoretical importance, it is indispensable to evaluate them in experimental and industrial setups. As such the presented case studies can be considered as benchmarks for the proposed observer-based controller designs for non-smooth and discontinuous systems. The value of non-smooth and discontinuous models and observer-based controllers is also evidenced by this work, as it demonstrates the effectiveness for real-life applications

    Rotor Position Estimation of a Pseudo Direct Drive PM machine using Extended Kalman Filter

    Get PDF
    The paper describes an improved method to control a Pseudo Direct Drive (PDD) permanent magnet machine with only one sensor on the low-speed rotor (LSR). Due to the magnetic coupling between the two rotors, the PDD machine exhibits low stiffness and non-linear torque transmission characteristics, and hence, the position of the high-speed rotor (HSR) cannot be determined using a simple gear ratio relationship. An extended kalman filter is proposed to accurately estimate the position of the HSR which is used to provide electronic commutation for the drive. The technique has been implemented on a prototype PDD subjected to various speed and load torque profiles

    Active control of radial rotor vibrations in electric machines : identification, modeling and control design

    Get PDF
    This paper presents results related to modeling, identification, control design and simulation of an electric motor equipped with a new force actuator. The model consists of several partial models, thus separating certain physical phenomena into independent processes. The inputs and outputs of the models to be identified are strongly correlated. This makes the identification process significantly more complicated. Three different control algorithms are designed for the process. The performance of the control algorithms are tested against finite element models in extensive simulations. The paper concludes in description of preliminary test results with an actual test machine.reviewe
    • …
    corecore