180 research outputs found

    Home-based rehabilitation of the shoulder using auxiliary systems and artificial intelligence: an overview

    Get PDF
    Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.info:eu-repo/semantics/publishedVersio

    Exoskeletons for workers: A case series study in an enclosures production line

    Get PDF
    This case-series study aims to investigate the effects of a passive shoulder support exoskeleton on experienced workers during their regular work shifts in an enclosures production site. Experimental activities included three sessions, two of which were conducted in-field (namely, at two workstations of the painting line, where panels were mounted and dismounted from the line; each session involved three participants), and one session was carried out in a realistic simulated environment (namely, the workstations were recreated in a laboratory; this session involved four participants). The effect of the exoskeleton was evaluated through electromyographic activity and perceived effort. After in-field sessions, device usability and user acceptance were also assessed. Data were reported individually for each participant. Results showed that the use of the exoskeleton reduced the total shoulder muscular activity compared to normal working conditions, in all subjects and experimental sessions. Similarly, the use of the exoskeleton resulted in reductions of the perceived effort in the shoulder, arm, and lower back. Overall, participants indicated high usability and acceptance of the device. This case series invites larger validation studies, also in diverse operational contexts

    Concept of an exoskeleton for industrial applications with modulated impedance based on Electromyographic signal recorded from the operator

    Get PDF
    The introduction of an active exoskeleton that enhances the operator power in the manufacturing field was demonstrated in literature to lead to beneficial effects in terms of reducing fatiguing and the occurrence of musculo-skeletal diseases. However, a large number of manufacturing operations would not benefit from power increases because it rather requires the modulation of the operator stiffness. However, in literature, considerably less attention was given to those robotic devices that regulate their stiffness based on the operator stiffness, even if their introduction in the line would aid the operator during different manipulations respect with the exoskeletons with variable power. In this thesis the description of the command logic of an exoskeleton for manufacturing applications, whose stiffness is modulated based on the operator stiffness, is described. Since the operator stiffness cannot be mechanically measured without deflecting the limb, an estimation based on the superficial Electromyographic signal is required. A model composed of 1 joint and 2 antagonist muscles was developed to approximate the elbow and the wrist joints. Each muscle was approximated as the Hill model and the analysis of the joint stiffness, at different joint angle and muscle activations, was performed. The same Hill muscle model was then implemented in a 2 joint and 6 muscles (2J6M) model which approximated the elbow-shoulder system. Since the estimation of the exerted stiffness with a 2J6M model would be quite onerous in terms of processing time, the estimation of the operator end-point stiffness in realtime would therefore be questionable. Then, a linear relation between the end-point stiffness and the component of muscle activation that does not generate any end-point force, is proposed. Once the stiffness the operator exerts was estimated, three command logics that identifies the stiffness the exoskeleton is required to exert are proposed. These proposed command logics are: Proportional, Integral 1 s, and Integral 2 s. The stiffening exerted by a device in which a Proportional logic is implemented is proportional, sample by sample, to the estimated stiffness exerted by the operator. The stiffening exerted by the exoskeleton in which an Integral logic is implemented is proportional to the stiffness exerted by the operator, averaged along the previous 1 second (Integral 1 s) or 2 seconds (Integral 2 s). The most effective command logic, among the proposed ones, was identified with empirical tests conducted on subjects using a wrist haptic device (the Hi5, developed by the Bioengineering group of the Imperial College of London). The experimental protocol consisted in a wrist flexion/extension tracking task with an external perturbation, alternated with isometric force exertion for the estimation of the occurrence of the fatigue. The fatigue perceived by the subject, the tracking error, defined as the RMS of the difference between wrist and target angles, and the energy consumption, defined as the sum of the squared signals recorded from two antagonist muscles, indicated the Integral 1 s logic to be the most effective for controlling the exoskeleton. A logistic relation between the stiffness exerted by the subject and the stiffness exerted by the robotic devices was selected, because it assured a smooth transition between the maximum and the minimum stiffness the device is required to exert. However, the logistic relation parameters are subject-specific, therefore an experimental estimation is required. An example was provided. Finally, the literature about variable stiffness actuators was analyzed to identify the most suitable device for exoskeleton stiffness modulation. This actuator is intended to be integrated on an existing exoskeleton that already enhances the operator power based on the operator Electromyographic signal. The identified variable stiffness actuator is the DLR FSJ, which controls its stiffness modulating the preload of a single spring
    • …
    corecore