16,482 research outputs found

    Current Use and Future Perspectives of Spatial Audio Technologies in Electronic Travel Aids

    Get PDF
    Electronic travel aids (ETAs) have been in focus since technology allowed designing relatively small, light, and mobile devices for assisting the visually impaired. Since visually impaired persons rely on spatial audio cues as their primary sense of orientation, providing an accurate virtual auditory representation of the environment is essential. This paper gives an overview of the current state of spatial audio technologies that can be incorporated in ETAs, with a focus on user requirements. Most currently available ETAs either fail to address user requirements or underestimate the potential of spatial sound itself, which may explain, among other reasons, why no single ETA has gained a widespread acceptance in the blind community. We believe there is ample space for applying the technologies presented in this paper, with the aim of progressively bridging the gap between accessibility and accuracy of spatial audio in ETAs.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 643636.Peer Reviewe

    IO Vision – an integrated system to support the visually impaired

    Get PDF
    Security questions are one of the techniques used to recover passwords. The main limitation of security questions is that users find strong answers difficult to remember. This leads users to trade-off security for the convenience of an improved memorability. Previous research found that increased fun and enjoyment can lead to an enhanced memorability, which provides a better learning experience. Hence, we empirically investigate whether a serious game has the potential of improving the memorability of strong answers to security questions. For our serious game, we adopted the popular “4 Pics 1 word” mobile game because of its use of pictures and cues, which psychology research found to be important to help with memorability. Our findings indicate that the proposed serious game could potentially improve the memorability of answers to security questions. This potential improvement in memorability, could eventually help reduce the trade-off between usability and security in fall-back authentication

    Mental maps and the use of sensory information by blind and partially sighted people

    Get PDF
    This article aims to fill an important gap in the literature by reporting on blind and partially sighted people's use of spatial representations (mental maps) from their perspective and when travelling on real routes. The results presented here were obtained from semi-structured interviews with 100 blind and partially sighted people in five different countries. They are intended to answer three questions about the representation of space by blind and partially sighted people, how these representations are used to support travel, and the implications for the design of travel aids and orientation and mobility training. They show that blind and partially sighted people do have spatial representations and that a number of them explicitly use the term mental map. This article discusses the variety of approaches to spatial representations, including the sensory modalities used, the use of global or local representations, and the applications to support travel. The conclusions summarize the answers to the three questions and include a two-level preliminary classification of the spatial representations of blind and partially sighted people

    Multisensory inclusive design with sensory substitution

    Get PDF

    An IoT-based contribution to improve mobility of the visually impaired in Smart Cities

    Get PDF
    The Internet of Things envisions that objects of everyday life will be equipped with sensors, microcontrollers, transceivers for digital communication and suitable protocol which communicates among them and with users, becoming an integral part of Internet. Due to the growing developments in digital technologies, Smart Cities have been equipped with different electronic devices based on IoT and several applications are being created for most diverse areas of knowledge making systems more efficient. However, Assistive technology is a field that is not enough explored in this scenario yet. In this work, an integrated framework with an IoT architecture customized for an electronic cane (electronic travel aid designed for the visually impaired) has been designed. The architecture is organized by a five-layer architecture: edge technology, gateway, Internet, middleware and application. This new feature brings the ability to connect to environment devices, receiving the coordinates of their geographic locations, alerting the user when it is close to anyone of these devices and sending those coordinates to a web application for smart monitoring. Preliminary studies and experimental tests with three blind users of the Cane show that this approach would contribute to get more spatial information from the environment improving mobility of visually impaired people.This research was supported by the Brazilian National Council of Scientific & Technological Development—CNPq, Grant Number 315338/2018-0, and Fundação de Amparo a Pesquisa no Estado de Santa Catarina -FAPESC, (Programa Sinapse da Inovação Operação SC III)

    Hacking Blind Navigation

    Get PDF
    Independent navigation in unfamiliar and complex environments is a major challenge for blind people. This challenge motivates a multi-disciplinary effort in the CHI community aimed at developing assistive technologies to support the orientation and mobility of blind people, including related disciplines such as accessible computing, cognitive sciences, computer vision, and ubiquitous computing. This workshop intends to bring these communities together to increase awareness on recent advances in blind navigation assistive technologies, benefit from diverse perspectives and expertises, discuss open research challenges, and explore avenues for multi-disciplinary collaborations. Interactions are fostered through a panel on Open Challenges and Avenues for Interdisciplinary Collaboration, Minute-Madness presentations, and a Hands-On Session where workshop participants can hack (design or prototype) new solutions to tackle open research challenges. An expected outcome is the emergence of new collaborations and research directions that can result in novel assistive technologies to support independent blind navigation

    Evaluating the development of wearable devices, personal data assistants and the use of other mobile devices in further and higher education institutions

    Get PDF
    This report presents technical evaluation and case studies of the use of wearable and mobile computing mobile devices in further and higher education. The first section provides technical evaluation of the current state of the art in wearable and mobile technologies and reviews several innovative wearable products that have been developed in recent years. The second section examines three scenarios for further and higher education where wearable and mobile devices are currently being used. The three scenarios include: (i) the delivery of lectures over mobile devices, (ii) the augmentation of the physical campus with a virtual and mobile component, and (iii) the use of PDAs and mobile devices in field studies. The first scenario explores the use of web lectures including an evaluation of IBM's Web Lecture Services and 3Com's learning assistant. The second scenario explores models for a campus without walls evaluating the Handsprings to Learning projects at East Carolina University and ActiveCampus at the University of California San Diego . The third scenario explores the use of wearable and mobile devices for field trips examining San Francisco Exploratorium's tool for capturing museum visits and the Cybertracker field computer. The third section of the report explores the uses and purposes for wearable and mobile devices in tertiary education, identifying key trends and issues to be considered when piloting the use of these devices in educational contexts

    A Sound Approach Toward a Mobility Aid for Blind and Low-Vision Individuals

    Get PDF
    Reduced independent mobility of blind and low-vision individuals (BLVIs) cause considerable societal cost, burden on relatives, and reduced quality of life for the individuals, including increased anxiety, depression symptoms, need of assistance, risk of falls, and mortality. Despite the numerous electronic travel aids proposed since at least the 1940’s, along with ever-advancing technology, the mobility issues persist. A substantial reason for this is likely several and severe shortcomings of the field, both in regards to aid design and evaluation.In this work, these shortcomings are addressed with a generic design model called Desire of Use (DoU), which describes the desire of a given user to use an aid for a given activity. It is then applied on mobility of BLVIs (DoU-MoB), to systematically illuminate and structure possibly all related aspects that such an aid needs to aptly deal with, in order for it to become an adequate aid for the objective. These aspects can then both guide user-centered design as well as choice of test methods and measures.One such measure is then demonstrated in the Desire of Use Questionnaire for Mobility of Blind and Low-Vision Individuals (DoUQ-MoB), an aid-agnostic and comprehensive patient-reported outcome measure. The question construction originates from the DoU-MoB to ensure an encompassing focus on mobility of BLVIs, something that has been missing in the field. Since it is aid-agnostic it facilitates aid comparison, which it also actively promotes. To support the reliability of the DoUQ-MoB, it utilizes the best known practices of questionnaire design and has been validated once with eight orientation and mobility professionals, and six BLVIs. Based on this, the questionnaire has also been revised once.To allow for relevant and reproducible methodology, another tool presented herein is a portable virtual reality (VR) system called the Parrot-VR. It uses a hybrid control scheme of absolute rotation by tracking the user’s head in reality, affording intuitive turning; and relative movement where simple button presses on a controller moves the virtual avatar forward and backward, allowing for large-scale traversal while not walking physically. VR provides excellent reproducibility, making various aggregate movement analysis feasible, while it is also inherently safe. Meanwhile, the portability of the system facilitates testing near the participants, substantially increasing the number of potential blind and low-vision recruits for user tests.The thesis also gives a short account on the state of long-term testing in the field; it being short is mainly due to that there is not much to report. It then provides an initial investigation into possible outcome measures for such tests by taking instruments in use by Swedish orientation and mobility professionals as a starting point. Two of these are also piloted in an initial single-session trial with 19 BLVIs, and could plausibly be used for long-term tests after further evaluation.Finally, a discussion is presented regarding the Audomni project — the development of a primary mobility aid for BLVIs. Audomni is a visuo-auditory sensory supplementation device, which aims to take visual information and translate it to sound. A wide field-of-view, 3D-depth camera records the environment, which is then transformed to audio through the sonification algorithms of Audomni, and finally presented in a pair of open-ear headphones that do not block out environmental sounds. The design of Audomni leverages the DoU-MoB to ensure user-centric development and evaluation, in the aim of reaching an aid with such form and function that it grants the users better mobility, while the users still want to use it.Audomni has been evaluated with user tests twice, once in pilot tests with two BLVIs, and once in VR with a heterogenous set of 19 BLVIs, utilizing the Parrot-VR and the DoUQ-MoB. 76 % of responders (13 / 17) answered that it was very or extremely likely that they would want use Audomni along with their current aid. This might be the first result in the field demonstrating a majority of blind and low-vision participants reporting that they actually want to use a new electronic travel aid. This shows promise that eventual long-term tests will demonstrate an increased mobility of blind and low-vision users — the overarching project aim. Such results would ultimately mean that Audomni can become an aid that alleviates societal cost, reduces burden on relatives, and improves users’ quality of life and independence

    A survey on hardware and software solutions for multimodal wearable assistive devices targeting the visually impaired

    Get PDF
    The market penetration of user-centric assistive devices has rapidly increased in the past decades. Growth in computational power, accessibility, and cognitive device capabilities have been accompanied by significant reductions in weight, size, and price, as a result of which mobile and wearable equipment are becoming part of our everyday life. In this context, a key focus of development has been on rehabilitation engineering and on developing assistive technologies targeting people with various disabilities, including hearing loss, visual impairments and others. Applications range from simple health monitoring such as sport activity trackers, through medical applications including sensory (e.g. hearing) aids and real-time monitoring of life functions, to task-oriented tools such as navigational devices for the blind. This paper provides an overview of recent trends in software and hardware-based signal processing relevant to the development of wearable assistive solutions

    Virtual environment navigation with look-around mode to explore new real spaces by people who are blind

    Get PDF
    Background. This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. Methods. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. Results. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared to only 30% of the control group participants. Conclusion. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model
    • 

    corecore