780 research outputs found

    Study of Single-Event Transient Effects on Analog Circuits

    Get PDF
    Radiation in space is potentially hazardous to microelectronic circuits and systems such as spacecraft electronics. Transient effects on circuits and systems from high energetic particles can interrupt electronics operation or crash the systems. This phenomenon is particularly serious in complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) since most of modern ICs are implemented with CMOS technologies. The problem is getting worse with the technology scaling down. Radiation-hardening-by-design (RHBD) is a popular method to build CMOS devices and systems meeting performance criteria in radiation environment. Single-event transient (SET) effects in digital circuits have been studied extensively in the radiation effect community. In recent years analog RHBD has been received increasing attention since analog circuits start showing the vulnerability to the SETs due to the dramatic process scaling. Analog RHBD is still in the research stage. This study is to further study the effects of SET on analog CMOS circuits and introduces cost-effective RHBD approaches to mitigate these effects. The analog circuits concerned in this study include operational amplifiers (op amps), comparators, voltage-controlled oscillators (VCOs), and phase-locked loops (PLLs). Op amp is used to study SET effects on signal amplitude while the comparator, the VCO, and the PLL are used to study SET effects on signal state during transition time. In this work, approaches based on multi-level from transistor, circuit, to system are presented to mitigate the SET effects on the aforementioned circuits. Specifically, RHBD approach based on the circuit level, such as the op amp, adapts the auto-zeroing cancellation technique. The RHBD comparator implemented with dual-well and triple-well is studied and compared at the transistor level. SET effects are mitigated in a LC-tank oscillator by inserting a decoupling resistor. The RHBD PLL is implemented on the system level using triple modular redundancy (TMR) approach. It demonstrates that RHBD at multi-level can be cost-effective to mitigate the SEEs in analog circuits. In addition, SETs detection approaches are provided in this dissertation so that various mitigation approaches can be implemented more effectively. Performances and effectiveness of the proposed RHBD are validated through SPICE simulations on the schematic and pulsed-laser experiments on the fabricated circuits. The proposed and tested RHBD techniques can be applied to other relevant analog circuits in the industry to achieve radiation-tolerance

    CMOS VLSI circuits for imaging

    Get PDF

    A 10-Gb/s two-dimensional eye-opening monitor in 0.13-μm standard CMOS

    Get PDF
    An eye-opening monitor (EOM) architecture that can capture a two-dimensional (2-D) map of the eye diagram of a high-speed data signal has been developed. Two single-quadrant phase rotators and one digital-to-analog converter (DAC) are used to generate rectangular masks with variable sizes and aspect ratios. Each mask is overlapped with the received eye diagram and the number of signal transitions inside the mask is recorded as error. The combination of rectangular masks with the same error creates error contours that overall provide a 2-D map of the eye. The authors have implemented a prototype circuit in 0.13-μm standard CMOS technology that operates up to 12.5 Gb/s at 1.2-V supply. The EOM maps the input eye to a 2-D error diagram with up to 68-dB mask error dynamic range. The left and right halves of the eyes are monitored separately to capture horizontally asymmetric eyes. The chip consumes 330 mW and operates reliably with supply voltages as low as 1 V at 10 Gb/s. The authors also present a detailed analysis that verifies if the measurements are in good agreement with the expected results

    Study Of Design For Reliability Of Rf And Analog Circuits

    Get PDF
    Due to continued device dimensions scaling, CMOS transistors in the nanometer regime have resulted in major reliability and variability challenges. Reliability issues such as channel hot electron injection, gate dielectric breakdown, and negative bias temperature instability (NBTI) need to be accounted for in the design of robust RF circuits. In addition, process variations in the nanoscale CMOS transistors are another major concern in today‟s circuits design. An adaptive gate-source biasing scheme to improve the RF circuit reliability is presented in this work. The adaptive method automatically adjusts the gate-source voltage to compensate the reduction in drain current subjected to various device reliability mechanisms. A class-AB RF power amplifier shows that the use of a source resistance makes the power-added efficiency robust against threshold voltage and mobility variations, while the use of a source inductance is more reliable for the input third-order intercept point. A RF power amplifier with adaptive gate biasing is proposed to improve the circuit device reliability degradation and process variation. The performances of the power amplifier with adaptive gate biasing are compared with those of the power amplifier without adaptive gate biasing technique. The adaptive gate biasing makes the power amplifier more resilient to process variations as well as the device aging such as mobility and threshold voltage degradation. Injection locked voltage-controlled oscillators (VCOs) have been examined. The VCOs are implemented using TSMC 0.18 µm mixed-signal CMOS technology. The injection locked oscillators have improved phase noise performance than free running oscillators. iv A differential Clapp-VCO has been designed and fabricated for the evaluation of hot electron reliability. The differential Clapp-VCO is formed using cross-coupled nMOS transistors, on-chip transformers/inductors, and voltage-controlled capacitors. The experimental data demonstrate that the hot carrier damage increases the oscillation frequency and degrades the phase noise of Clapp-VCO. A p-channel transistor only VCO has been designed for low phase noise. The simulation results show that the phase noise degrades after NBTI stress at elevated temperature. This is due to increased interface states after NBTI stress. The process variability has also been evaluated

    저 잡음 디지털 위상동기루프의 합성

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 정덕균.As a device scaling proceeds, Charge Pump PLL has been confronted by many design challenges. Especially, a leakage current in loop filter and reduced dynamic range due to a lower operating voltage make it difficult to adopt a conventional analog PLL architecture for a highly scaled technology. To solve these issues, All Digital PLL (ADPLL) has been widely studied recently. ADPLL mitigates a filter leakage and a reduced dynamic range issues by replacing the analog circuits with digital ones. However, it is still difficult to get a low jitter under low supply voltage. In this thesis, we propose a dual loop architecture to achieve a low jitter even with a low supply voltage. And bottom-up based multi-step TDC and DCO are proposed to meet both fine resolution and wide operation range. In the aspect of design methodology, ADPLL has relied on a full custom design method although ADPLL is fully described in HDL (Hardware Description Language). We propose a new cell based layout technique to automatically synthesize the whole circuit and layout. The test chip has no linearity degradation although it is fully synthesized using a commercially available auto P&R tool. We has implemented an all digital pixel clock generator using the proposed dual loop architecture and the cell based layout technique. The entire circuit is automatically synthesized using 28nm CMOS technology. And s-domain linear model is utilized to optimize the jitter of the dual-loop PLL. Test chip occupies 0.032mm2, and achieves a 15ps_rms integrated jitter although it has extremely low input reference clock of 100 kHz. The whole circuit operates at 1.0V and consumes only 3.1mW.Abstract i Lists of Figures vii Lists of Tables xiii 1. Introduction 1 1.1 Thesis Motivation and Organization 1 1.1.1 Motivation 1 1.1.2 Thesis Organization 2 1.2 PLL Design Issues in Scaled CMOS Technology 3 1.2.1 Low Supply Voltage 4 1.2.2 High Leakage Current 6 1.2.3 Device Reliability: NBTI, HCI, TDDB, EM 8 1.2.4 Mismatch due to Proximity Effects: WPE, STI 11 1.3 Overview of Clock Synthesizers 14 1.3.1 Dual Voltage Charge Pump PLL 14 1.3.2 DLL Based Edge Combining Clock Multiplier 16 1.3.3 Recirculation DLL 17 1.3.4 Reference Injected PLL 18 1.3.5 All Digital PLL 19 1.3.6 Flying Adder Clock Synthesizer 20 1.3.7 Dual Loop Hybrid PLL 21 1.3.8 Comparisons 23 2. Tutorial of ADPLL Design 25 2.1 Introduction 25 2.1.1 Motivation for a pure digital 25 2.1.2 Conversion to digital domain 26 2.2 Functional Blocks 26 2.2.1 TDC, and PFD/Charge Pump 26 2.2.2 Digital Loop Filter and Analog R/C Loop Filter 29 2.2.3 DCO and VCO 34 2.2.4 S-domain Model of the Whole Loop 34 2.2.5 ADPLL Loop Design Flow 36 2.3 S-domain Noise Model 41 2.3.1 Noise Transfer Functions 41 2.3.2 Quantization Noise due to Limited TDC Resolution 45 2.3.3 Quantization Noise due to Divider ΔΣ Noise 46 2.3.4 Quantization Noise due to Limited DCO Resolution 47 2.3.5 Quantization Noise due to DCO ΔΣ Dithering 48 2.3.6 Random Noise of DCO and Input Clock 50 2.3.7 Over-all Phase Noise 50 3. Synthesizable All Digital Pixel Clock PLL Design 53 3.1 Overview 53 3.1.1 Introduction of Pixel Clock PLL 53 3.1.1 Design Specifications 55 3.2 Proposed Architecture 60 3.2.1 All Digital Dual Loop PLL 60 3.2.2 2-step controlled TDC 61 3.2.3 3-step controlled DCO 64 3.2.4 Digital Loop Filter 76 3.3 S-domain Noise Model 78 3.4 Loop Parameter Optimization Based on the s-domain Model 85 3.5 RTL and Gate Level Circuit Design 88 3.5.1 Overview of the design flow 88 3.5.2 Behavioral Simulation and Gate level synthesis 89 3.5.1 Preventing a meta-stability 90 3.5.1 Reusable Coding Style 92 3.6 Layout Synthesis 94 3.6.1 Auto P&R 94 3.6.2 Design of Unit Cells 97 3.6.3 Linearity Degradation in Synthesized TDC 98 3.6.4 Linearity Degradation in Synthesized DCO 106 3.7 Experiment Results 109 3.7.1 DCO measurement 109 3.7.2 PLL measurement 113 3.8 Conclusions 117 A. Device Technology Scaling Trends 118 A.1. Motivation for Technology Scaling 118 A.2. Constant Field Scaling 120 A.3. Quasi Constant Voltage Scaling 123 A.4. Device Technology Trends in Real World 124 B. Spice Simulation Tip for a DCO 137 C. Phase Noise to Jitter Conversion 141 Bibliography 144 초록 151Docto

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Analogue-to-digital conversion and image enhancement using neuron-mos technology

    Get PDF
    This thesis describes the development of two novel circuits that use a newly developed technology, that of neuron-MOS, for the purposes of analogue-to-digital conversion and image enhancement. Neuron-MOS has the potential to reduce both the complexity and number of transistors required for analogue and digital circuits. A reduced area, low transistor-count- analogue-to-digital converter that is suitable for inclusion in a massively parallel array of identical image processing elements is developed. Supporting the function of the array some fundamental image enhancement operations, such as edge enhancement, are examined exploiting the unique features of neuron-MOS technology

    An Analog Multiphase Self-Calibrating DLL to Minimize the Effects of Process, Supply Voltage, and Temperature Variations

    Get PDF
    Delay locked loops have been found to be useful tools in such applications as computing, TDCs, and communications. These system can be found in space exploration vehicles and satellites, which operate in extreme environments. Unfortunately, in these environments supply voltage and temperature will not be constant, therefore they must be under consideration when designing a DLL. Furthermore, solar radiation in conjunction with the varying environmental aspects, could cause the delay locked loop to lose it locked state. Delay locked loops are inherently good at tracking these environmental aspects, but in order to do so, the voltage controlled delay line must exhibit a very large gain, which translates to a large capture range. Assuming charged particles hit a key node in the DLL (e.g. the control voltage), the DLL would lose lock and would have to recapture it. Depending on the severity of the uctuation, this relocking process could easily take on the order of many microseconds assuming the bandwidth was kept low to minimize jitter. To date, no delay locked loops have been published for extreme environment applications. In many other extreme environment circuits, calibration techniques have been applied to minimize the environmental effects. Whereas there have been multiple calibration methods published related to delay locked loops, none of them were intended for extreme environments. Furthermore, none of these methods are directly suitable for an analog multiphase delay locked loop. The self-calibrating DLL in this work includes an all digital calibration circuit, as well as a system transient monitor. The coarse calibration helps minimize global process, voltage, and temperature errors for an analog multiphase DLL. The system monitor is used to detect any transients that might cause the DLL to unlock, which could be used to allow the DLL to be recalibrated to the new environmental conditions. The presented measurement results will demonstrate that the DLL can be used in extreme environments such as space, or other extreme environment applications

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd
    corecore