3,315 research outputs found

    CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

    Get PDF
    In open-ended environments, autonomous learning agents must set their own goals and build their own curriculum through an intrinsically motivated exploration. They may consider a large diversity of goals, aiming to discover what is controllable in their environments, and what is not. Because some goals might prove easy and some impossible, agents must actively select which goal to practice at any moment, to maximize their overall mastery on the set of learnable goals. This paper proposes CURIOUS, an algorithm that leverages 1) a modular Universal Value Function Approximator with hindsight learning to achieve a diversity of goals of different kinds within a unique policy and 2) an automated curriculum learning mechanism that biases the attention of the agent towards goals maximizing the absolute learning progress. Agents focus sequentially on goals of increasing complexity, and focus back on goals that are being forgotten. Experiments conducted in a new modular-goal robotic environment show the resulting developmental self-organization of a learning curriculum, and demonstrate properties of robustness to distracting goals, forgetting and changes in body properties.Comment: Accepted at ICML 201

    Dot-to-Dot: Explainable Hierarchical Reinforcement Learning for Robotic Manipulation

    Full text link
    Robotic systems are ever more capable of automation and fulfilment of complex tasks, particularly with reliance on recent advances in intelligent systems, deep learning and artificial intelligence. However, as robots and humans come closer in their interactions, the matter of interpretability, or explainability of robot decision-making processes for the human grows in importance. A successful interaction and collaboration will only take place through mutual understanding of underlying representations of the environment and the task at hand. This is currently a challenge in deep learning systems. We present a hierarchical deep reinforcement learning system, consisting of a low-level agent handling the large actions/states space of a robotic system efficiently, by following the directives of a high-level agent which is learning the high-level dynamics of the environment and task. This high-level agent forms a representation of the world and task at hand that is interpretable for a human operator. The method, which we call Dot-to-Dot, is tested on a MuJoCo-based model of the Fetch Robotics Manipulator, as well as a Shadow Hand, to test its performance. Results show efficient learning of complex actions/states spaces by the low-level agent, and an interpretable representation of the task and decision-making process learned by the high-level agent
    corecore