42 research outputs found

    View-Action Representation Learning for Active First-Person Vision

    Get PDF
    In visual navigation, a moving agent equipped with a camera is traditionally controlled by an input action and the estimation of the features from a sensory state (i.e. the camera view) is treated as a pre-processing step to perform high-level vision tasks. In this paper, we present a representation learning approach that, instead, considers both state and action as inputs. We condition the encoded feature from the state transition network on the action that changes the view of the camera, thus describing the scene more effectively. Specifically, we introduce an action representation module that generates decoded higher dimensional representations from an input action to increase the representational power. We then fuse the output from the action representation module with the intermediate response of the state transition network that predicts the future state. To enhance the discrimination capability among predictions from different input actions, we further introduce triplet ranking loss and N-tuplet loss functions, which in turn can be integrated with the regression loss. We demonstrate the proposed representation learning approach in reinforcement and imitation learning-based mapless navigation tasks, where the camera agent learns to navigate only through the view of the camera and the performed action, without external information

    Mapless Navigation among Dynamics with Social-safety-awareness: a reinforcement learning approach from 2D laser scans

    Full text link
    We propose a method to tackle the problem of mapless collision-avoidance navigation where humans are present using 2D laser scans. Our proposed method uses ego-safety to measure collision from the robot's perspective while social-safety to measure the impact of our robot's actions on surrounding pedestrians. Specifically, the social-safety part predicts the intrusion impact of our robot's action into the interaction area with surrounding humans. We train the policy using reinforcement learning on a simple simulator and directly evaluate the learned policy in Gazebo and real robot tests. Experiments show the learned policy can be smoothly transferred without any fine tuning. We observe that our method demonstrates time-efficient path planning behavior with high success rate in mapless navigation tasks. Furthermore, we test our method in a navigation among dynamic crowds task considering both low and high volume traffic. Our learned policy demonstrates cooperative behavior that actively drives our robot into traffic flows while showing respect to nearby pedestrians. Evaluation videos are at https://sites.google.com/view/ssw-batmanComment: Accepted in ICRA 202

    Reinforcement Learning for Self-exploration in Narrow Spaces

    Full text link
    In narrow spaces, motion planning based on the traditional hierarchical autonomous system could cause collisions due to mapping, localization, and control noises. Additionally, it is disabled when mapless. To tackle these problems, we leverage deep reinforcement learning which is verified to be effective in self-decision-making, to self-explore in narrow spaces without a map while avoiding collisions. Specifically, based on our Ackermann-steering rectangular-shaped ZebraT robot and its Gazebo simulator, we propose the rectangular safety region to represent states and detect collisions for rectangular-shaped robots, and a carefully crafted reward function for reinforcement learning that does not require the destination information. Then we benchmark five reinforcement learning algorithms including DDPG, DQN, SAC, PPO, and PPO-discrete, in a simulated narrow track. After training, the well-performed DDPG and DQN models can be transferred to three brand new simulated tracks, and furthermore to three real-world tracks

    Deep Reinforcement Learning-Based Mapless Crowd Navigation with Perceived Risk of the Moving Crowd for Mobile Robots

    Full text link
    Current state-of-the-art crowd navigation approaches are mainly deep reinforcement learning (DRL)-based. However, DRL-based methods suffer from the issues of generalization and scalability. To overcome these challenges, we propose a method that includes a Collision Probability (CP) in the observation space to give the robot a sense of the level of danger of the moving crowd to help the robot navigate safely through crowds with unseen behaviors. We studied the effects of changing the number of moving obstacles to pay attention during navigation. During training, we generated local waypoints to increase the reward density and improve the learning efficiency of the system. Our approach was developed using deep reinforcement learning (DRL) and trained using the Gazebo simulator in a non-cooperative crowd environment with obstacles moving at randomized speeds and directions. We then evaluated our model on four different crowd-behavior scenarios. The results show that our method achieved a 100% success rate in all test settings. We compared our approach with a current state-of-the-art DRL-based approach, and our approach has performed significantly better, especially in terms of social safety. Importantly, our method can navigate in different crowd behaviors and requires no fine-tuning after being trained once. We further demonstrated the crowd navigation capability of our model in real-world tests.Comment: 6 pages, 7 figure

    Enhancing Exploration and Safety in Deep Reinforcement Learning

    Get PDF
    A Deep Reinforcement Learning (DRL) agent tries to learn a policy maximizing a long-term objective by trials and errors in large state spaces. However, this learning paradigm requires a non-trivial amount of interactions in the environment to achieve good performance. Moreover, critical applications, such as robotics, typically involve safety criteria to consider while designing novel DRL solutions. Hence, devising safe learning approaches with efficient exploration is crucial to avoid getting stuck in local optima, failing to learn properly, or causing damages to the surrounding environment. This thesis focuses on developing Deep Reinforcement Learning algorithms to foster efficient exploration and safer behaviors in simulation and real domains of interest, ranging from robotics to multi-agent systems. To this end, we rely both on standard benchmarks, such as SafetyGym, and robotic tasks widely adopted in the literature (e.g., manipulation, navigation). This variety of problems is crucial to assess the statistical significance of our empirical studies and the generalization skills of our approaches. We initially benchmark the sample efficiency versus performance trade-off between value-based and policy-gradient algorithms. This part highlights the benefits of using non-standard simulation environments (i.e., Unity), which also facilitates the development of further optimization for DRL. We also discuss the limitations of standard evaluation metrics (e.g., return) in characterizing the actual behaviors of a policy, proposing the use of Formal Verification (FV) as a practical methodology to evaluate behaviors over desired specifications. The second part introduces Evolutionary Algorithms (EAs) as a gradient-free complimentary optimization strategy. In detail, we combine population-based and gradient-based DRL to diversify exploration and improve performance both in single and multi-agent applications. For the latter, we discuss how prior Multi-Agent (Deep) Reinforcement Learning (MARL) approaches hinder exploration, proposing an architecture that favors cooperation without affecting exploration

    Goal-Guided Transformer-Enabled Reinforcement Learning for Efficient Autonomous Navigation

    Full text link
    Despite some successful applications of goal-driven navigation, existing deep reinforcement learning (DRL)-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-the-art (SOTA) baselines. The demonstration video (https://www.youtube.com/watch?v=aqJCHcsj4w0) and the source code (https://github.com/OscarHuangWind/DRL-Transformer-SimtoReal-Navigation) are also provided
    corecore