165,041 research outputs found

    Observation of electroweak production of two jets and a Z-boson pair

    Get PDF
    Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton–proton collision data corresponding to an integrated luminosity of 139 fb−1 recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7σ, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states.CERNANPCyTYerPhI, ArmeniaAustralian Research CouncilBMWFWAustrian Science Fund (FWF)Azerbaijan National Academy of Sciences (ANAS)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for InnovationNational Natural Science Foundation of China (NSFC)MEYS CR, Czech RepublicDNRFDanish Natural Science Research CouncilCentre National de la Recherche Scientifique (CNRS)CEA-DRF/IRFU, FranceFederal Ministry of Education & Research (BMBF)Max Planck SocietyRGC and Hong Kong SAR, ChinaIsrael Science FoundationBenoziyo Center, IsraelIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of ScienceCNRST, Morocco; NWORCN, NorwayMEiN, PolandFundacao para a Ciencia e a Tecnologia (FCT)MNE/IFA, RomaniaMinistry of Education, Science & Technological Development, SerbiaMSSR, SlovakiaSlovenian Research Agency - SloveniaMIZS, SloveniaSpanish GovernmentWallenberg Foundation, SwedenSwiss National Science Foundation (SNSF)Ministry of Science and Technology, TaiwanUK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC)United States Department of Energy (DOE)National Science Foundation (NSF)BCKDFCANARIECRC, CanadaCOST, ERCEuropean Union (EU)European Union (EU) Marie Curie ActionsAgence Nationale de la Recherche (ANR)German Research Foundation (DFG)Alexander von Humboldt FoundationGreek NSRF, GreeceBSF-NSFGerman-Israeli Foundation for Scientific Research and DevelopmentNorwegian Financial MechanismNCNLa Caixa FoundationCERCA Programme Generalitat de CatalunyaPROMETEOCenter for Forestry Research & Experimentation (CIEF)Goran Gustafssons Stiftelse, SwedenRoyal SocietyLeverhulme TrustNDGF (Denmark, Norway and Sweden) CC-IN2P3KIT/GridKA (Germany)INFN-CNAF (Italy)Netherlands GovernmentASGC (Taiwan)BNL (USA

    Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction

    Get PDF
    Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-Component system-defective mutants, Delta gacA and Delta gacS, and a double mutant, Delta gacA Delta gacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.</p

    Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies

    Get PDF
    The current microdevices used for biomedical research are often manufactured using microelectromechanical systems (MEMS) technology. Although it is possible to fabricate precise and reproducible rectangular microchannels using soft lithography techniques, this kind of geometry may not reflect the actual physiology of the microcirculation. Here, we present a simple method to fabricate circular polydimethysiloxane (PDMS) microchannels aiming to mimic an in vivo microvascular environment and suitable for state-of-the-art microscale flow visualization techniques, such as confocal µPIV/PTV. By using a confocal µPTV system individual red blood cells (RBCs) were successfully tracked trough a 75 µm circular PDMS microchannel. The results show that RBC lateral dispersion increases with the volume fraction of RBCs in the solution, i.e. with the hematocrit

    Exclusive project critical success processes A cultural diversity perspective

    Get PDF

    Stress responsive miR-23a attenuates skeletal muscle atrophy by targeting MAFbx /atrogin-1

    Get PDF
    Muscle atrophy occurs in many pathological states and results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. We used dexamethasone to induce muscle wasting and investigated the role of a microRNA (miRNA) in the control of muscle-specific E3 ubiquitin ligase MAFbx/atrogin-1. Here we show that miR-23a suppresses MAFbx/atrogin-1 translation by binding to 3&#x27;UTR of the mRNA. Furthermore, ectopic expression of miR-23a is sufficient to protect myocytes from atrophy in vitro and in vivo in response to dexamethasone treatment, and heat stress-induced miR-23a protects muscle from dexamethasone-induced muscle atrophy. Our surprising discovery of the physiological role of miR-23a in preventing the atrophy program should lay the basis not only for further understanding of the mechanisms of muscle wasting in diverse diseases, but also for developing novel therapies for these debilitating conditions
    corecore