36 research outputs found

    A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms

    Get PDF
    Background and objectives: Continuous and non-invasive blood pressure monitoring would revolutionize healthcare. Currently, blood pressure (BP) can only be accurately monitored using obtrusive cuff-based devices or invasive intra-arterial monitoring. In this work, we propose a novel hybrid neural network for the accurate estimation of blood pressure (BP) using only non-invasive electrocardiogram (ECG) and photoplethysmogram (PPG) waveforms as inputs. Methods: This work proposes a hybrid neural network combines the feature detection abilities of temporal convolutional layers with the strong performance on sequential data offered by long short-term memory layers. Raw electrocardiogram and photoplethysmogram waveforms are concatenated and used as network inputs. The network was developed using the TensorFlow framework. Our scheme is analysed and compared to the literature in terms of well known standards set by the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). Results: Our scheme achieves extremely low mean absolute errors (MAEs) of 4.41 mmHg for SBP, 2.91 mmHg for DBP, and 2.77 mmHg for MAP. A strong level of agreement between our scheme and the gold-standard intra-arterial monitoring is shown through Bland Altman and regression plots. Additionally, the standard for BP devices established by AAMI is met by our scheme. We also achieve a grade of 'A' based on the criteria outlined by the BHS protocol for BP devices. Conclusions: Our CNN-LSTM network outperforms current state-of-the-art schemes for non-invasive BP measurement from PPG and ECG waveforms. These results provide an effective machine learning approach that could readily be implemented into non-invasive wearable devices for use in continuous clinical and at-home monitoring

    A Novel Clustering-Based Algorithm for Continuous and Non-invasive Cuff-Less Blood Pressure Estimation

    Full text link
    Extensive research has been performed on continuous, non-invasive, cuffless blood pressure (BP) measurement using artificial intelligence algorithms. This approach involves extracting certain features from physiological signals like ECG, PPG, ICG, BCG, etc. as independent variables and extracting features from Arterial Blood Pressure (ABP) signals as dependent variables, and then using machine learning algorithms to develop a blood pressure estimation model based on these data. The greatest challenge of this field is the insufficient accuracy of estimation models. This paper proposes a novel blood pressure estimation method with a clustering step for accuracy improvement. The proposed method involves extracting Pulse Transit Time (PTT), PPG Intensity Ratio (PIR), and Heart Rate (HR) features from Electrocardiogram (ECG) and Photoplethysmogram (PPG) signals as the inputs of clustering and regression, extracting Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) features from ABP signals as dependent variables, and finally developing regression models by applying Gradient Boosting Regression (GBR), Random Forest Regression (RFR), and Multilayer Perceptron Regression (MLP) on each cluster. The method was implemented using the MIMICII dataset with the silhouette criterion used to determine the optimal number of clusters. The results showed that because of the inconsistency, high dispersion, and multi-trend behavior of the extracted features vectors, the accuracy can be significantly improved by running a clustering algorithm and then developing a regression model on each cluster, and finally weighted averaging of the results based on the error of each cluster. When implemented with 5 clusters and GBR, this approach yielded an MAE of 2.56 for SBP estimates and 2.23 for DBP estimates, which were significantly better than the best results without clustering (DBP: 6.27, SBP: 6.36)

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ˜ˆ์•• ์˜ˆ์ธก ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์œค์„ฑ๋กœ.While COVID-19 is changing the world's social profile, it is expected that the telemedicine sector, which has not been activated due to low regulation and reliability, will also undergo a major change. As COVID-19 spreads in the United States, the US Department of Health \& Human Services temporarily loosens the standards for telemedicine, while enabling telemedicine using Facebook, Facebook Messenger-based video chat, Hangouts, and Skype. The expansion of the telemedicine market is expected to quickly transform the existing treatment-oriented hospital-led medical market into a digital healthcare service market focused on prevention and management through wearables, big data, and health records analysis. In this prevention and management-oriented digital healthcare service, it is very important to develop a technology that can easily monitor a person's health status. One of the vital signs that can be used for personal health monitoring is blood pressure. High BP is a common and dangerous condition. About 1 out of 3 adults in the U.S. (about 75 million people) have high BP. This common condition increases the risk of heart disease and stroke, two of the leading causes of death for Americans. High BP is called the silent killer because it often has no warning signs or symptoms, and many people are not aware they have it. For these reasons, it is important to develop a technology that can easily and conveniently check BP regularly. In biomedical data analysis, various studies are being attempted to effectively analyze by applying machine learning to biomedical big data accumulated in large quantities. However, collecting blood pressure-related data at the level of big data is very difficult and very expensive because it takes a lot of manpower and time. So in this dissertation, we proposed a three-step strategy to overcome these issues. First, we describe a BP prediction model with extraction and concentration CNN architecture, to process publicly disclosed sequential ECG and PPG dataset. Second, we evaluate the performance of the developed model by applying the developed model to privately measured data. To address the third issue, we propose the knowledge distillation method and input pre-processing method to improve the accuracy of the blood pressure prediction model. All the methods proposed in this dissertation are based on a deep convolutional neural network (CNN). Unlike other studies based on manual recognition of the features, by utilizing the advantage of deep learning which automatically extracts features, raw biomedical signals are used intact to reflect the inherent characteristics of the signals themselves.์ฝ”๋กœ๋‚˜ 19์— ์˜ํ•œ ์ „ ์„ธ๊ณ„์˜ ์‚ฌํšŒ์  ํ”„๋กœํ•„ ๋ณ€ํ™”๋กœ, ๊ทœ์ œ์™€ ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— ํ™œ์„ฑํ™” ๋˜์ง€ ์•Š์€ ์›๊ฒฉ ์˜๋ฃŒ ๋ถ„์•ผ๋„ ํฐ ๋ณ€ํ™”๋ฅผ ๊ฒช์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ฝ”๋กœ๋‚˜ 19๊ฐ€ ๋ฏธ๊ตญ์— ํผ์ง์— ๋”ฐ๋ผ ๋ฏธ๊ตญ ๋ณด๊ฑด๋ณต์ง€๋ถ€๋Š” ์›๊ฒฉ ์ง„๋ฃŒ์˜ ํ‘œ์ค€์„ ์ผ์‹œ์ ์œผ๋กœ ์™„ํ™”ํ•˜๋ฉด์„œ ํŽ˜์ด์Šค๋ถ, ํŽ˜์ด์Šค๋ถ ๋ฉ”์‹ ์ € ๊ธฐ๋ฐ˜ ํ™”์ƒ ์ฑ„ํŒ…, ํ–‰์•„์›ƒ, ์Šค์นด์ดํ”„๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์ง„๋ฃŒ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์›๊ฒฉ์˜๋ฃŒ ์‹œ์žฅ์˜ ํ™•์žฅ์€ ๊ธฐ์กด์˜ ์น˜๋ฃŒ์ค‘์‹ฌ ๋ณ‘์›์ฃผ๋„์˜ ์˜๋ฃŒ์‹œ์žฅ์„ ์›จ์–ด๋Ÿฌ๋ธ”, ๋น… ๋ฐ์ดํ„ฐ ๋ฐ ๊ฑด๊ฐ•๊ธฐ๋ก ๋ถ„์„์„ ํ†ตํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ์— ์ค‘์ ์„ ๋‘” ๋””์ง€ํ„ธ ์˜๋ฃŒ ์„œ๋น„์Šค ์‹œ์žฅ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ ์ค‘์‹ฌ์˜ ๋””์ง€ํ„ธ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋ฅผ ์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ ํ˜ˆ์••์€ ๊ฐœ์ธ ๊ฑด๊ฐ• ๋ชจ๋‹ˆํ„ฐ๋ง์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„์ˆ˜ ์ง•ํ›„ ์ค‘ ํ•˜๋‚˜ ์ž…๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์•„์ฃผ ํ”ํ•˜๊ณ  ์œ„ํ—˜ํ•œ ์งˆํ™˜์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ ์„ฑ์ธ 3๋ช…์ค‘ 1๋ช…(์•ฝ 7,500๋งŒ๋ช…)์ด ๊ณ ํ˜ˆ์••์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ์ธ์˜ ์ฃผ์š” ์‚ฌ๋ง ์›์ธ ์ค‘ ๋‘๊ฐ€์ง€์ธ ์‹ฌ์žฅ์งˆํ™˜๊ณผ ๋‡Œ์กธ์ค‘์˜ ์œ„ํ—˜์„ ์ฆ๊ฐ€ ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์‹ ์ฒด์— ๊ฒฝ๊ณ  ์‹ ํ˜ธ๋‚˜ ์ž๊ฐ ์ฆ์ƒ์ด ์—†์–ด ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์ด ๊ณ ํ˜ˆ์••์ธ ๊ฒƒ์„ ์ธ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— "์‚ฌ์ผ๋ŸฐํŠธ ํ‚ฌ๋Ÿฌ"๋ผ ๋ถˆ๋ฆฌ์›๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ •๊ธฐ์ ์œผ๋กœ ์‰ฝ๊ณ  ํŽธ๋ฆฌํ•˜๊ฒŒ ํ˜ˆ์••์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์ฒด์˜ํ•™ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ถ„์•ผ์—์„œ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘๋œ ์ƒ์ฒด์˜ํ•™ ๋น… ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น… ๋ฐ์ดํ„ฐ ์ˆ˜์ค€์œผ๋กœ ๋‹ค๋Ÿ‰์˜ ํ˜ˆ์•• ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์ „๋ฌธ์ ์ธ ์ธ๋ ฅ๋“ค์ด ์˜ค๋žœ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ต๊ณ  ๋น„์šฉ ๋˜ํ•œ ๋งŽ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ 3๋‹จ๊ณ„ ์ „๋žต์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ˆ„๊ตฌ๋‚˜ ์‹œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณต๊ฐœ๋˜์–ด ์žˆ๋Š” ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉ, ์ˆœ์ฐจ์ ์ธ ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ์—์„œ ํ˜ˆ์••์„ ์ž˜ ์˜ˆ์ธกํ•˜๋„๋ก ๊ณ ์•ˆ๋œ ์ถ”์ถœ ๋ฐ ๋†์ถ• ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋Š” ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ๊ฐœ์ธ์—๊ฒŒ์„œ ์ธก์ •ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด ์ œ์•ˆ๋œ ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ ํ˜ˆ์••์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ง€์‹ ์ฆ๋ฅ˜๋ฒ•๊ณผ ์ž…๋ ฅ์‹ ํ˜ธ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋“  ํ˜ˆ์••์˜ˆ์ธก ๋ฐฉ๋ฒ•์€ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ํ˜ˆ์•• ์˜ˆ์ธก์— ํ•„์š”ํ•œ ํŠน์ง•๋“ค์„ ์ˆ˜๋™์œผ๋กœ ์ถ”์ถœํ•ด์•ผ ํ•˜๋Š” ๋‹ค๋ฅธ ์—ฐ๊ตฌ๋“ค๊ณผ ๋‹ค๋ฅด๊ฒŒ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ์žฅ์ ์„ ํ™œ์šฉ, ์•„๋ฌด๋Ÿฐ ์ฒ˜๋ฆฌ๋„ ํ•˜์ง€ ์•Š์€ ์›๋ž˜ ๊ทธ๋Œ€๋กœ์˜ ์ƒ์ฒด ์‹ ํ˜ธ์—์„œ ์‹ ํ˜ธ ์ž์ฒด์˜ ๊ณ ์œ ํ•œ ํŠน์ง•์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.1 Introduction 1 2 Background 5 2.1 Cuff-based BP measurement methods 9 2.1.1 Auscultatory method 9 2.1.2 Oscillometric method 10 2.1.3 Tonometric method 11 2.2 Biomedical signals used in cuffless BP prediction methods 13 2.2.1 Electrocardiography (ECG) 13 2.2.2 Photoplethysmography (PPG) 20 2.3 Cuffless BP measurement methods 21 2.3.1 PWV based BP prediction methods 25 2.3.2 Machine learning based pulse wave analysis methods 26 2.4 Deep learning for sequential biomedical data 30 2.4.1 Convolutional neural networks 31 2.4.2 Recurrent neural networks 32 3 End-to-end blood pressure prediction via fully convolutional networks 33 3.1 Introduction 35 3.2 Method 38 3.2.1 Data preparation 38 3.2.2 CNN based prediction model 41 3.2.3 Detailed architecture 45 3.3 Experimental results 47 3.3.1 Setup 47 3.3.2 Model evaluation & selection 48 3.3.3 Calibration-based method 51 3.3.4 Performance comparison 52 3.3.5 Verification using international standards for BP measurement grading criteria 54 3.3.6 Performance comparison by the input signal combinations 56 3.3.7 An ablation study of each architectural component of extraction-concentration blocks 58 3.3.8 Preprocessing of input signal to improve blood pressure prediction performance 59 3.4 Discussion 61 3.5 Summary 63 4 Blood pressure prediction by a smartphone sensor using fully convolutional networks 64 4.1 Introduction 66 4.2 Method 69 4.2.1 Data acquisition 71 4.2.2 Preprocessing of the PPG signals 71 4.2.3 PPG signal selection 71 4.2.4 Data preparation for CNN model training 72 4.2.5 Network architectures 72 4.3 Experimental results 75 4.3.1 Implementation details 75 4.3.2 Effect of PPG combination on BP prediction 75 4.3.3 Performance comparison with other related works 76 4.3.4 Verification using international standards for BP measurement grading criteria 77 4.3.5 Preprocessing of input signal to improve blood pressure prediction performance 79 4.4 Discussion 81 4.5 Summary 83 5 Improving accuracy of blood pressure prediction by distilling the knowledge of neural networks 84 5.1 Introduction 85 5.2 Methods 87 5.3 Experimental results 88 5.4 Discussion & Summary 89 6 Conclusion 90 6.1 Future work 92 Bibliography 93 Abstract (In Korean) 106Docto

    ๋Œ€๊ทœ๋ชจ ์ธ๊ตฌ ๋ชจ๋ธ๊ณผ ๋‹จ์ผ ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ์žฅ์น˜๋ฅผ ํ™œ์šฉํ•œ ๋น„์นจ์Šต์  ์—ฐ์† ๋™๋งฅ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2021. 2. ๊น€ํฌ์ฐฌ.์ตœ๊ทผ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ๋น„์นจ์Šต์  ์—ฐ์† ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋Œ€ํ•œ ํ•„์š”์„ฑ์ด ์ ์ฐจ ๋Œ€๋‘๋˜๋ฉด์„œ ๋งฅํŒŒ ์ „๋‹ฌ ์‹œ๊ฐ„, ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„, ๋˜๋Š” ๊ด‘์šฉ์ ๋งฅํŒŒ์˜ ํŒŒํ˜•์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๋‹ค์–‘ํ•œ ํŠน์ง•๋“ค์„ ์ด์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ์—ฐ๊ตฌ๋“ค์ด ์ „์„ธ๊ณ„์ ์œผ๋กœ ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋“ค์€ ๊ตญ์ œ ํ˜ˆ์•• ํ‘œ์ค€์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๋งค์šฐ ์ ์€ ์ˆ˜์˜ ํ”ผํ—˜์ž๋“ค ๋งŒ์„ ๋Œ€์ƒ์œผ๋กœ ์ฃผ๋กœ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์˜ ์ •ํ™•๋„๊ฐ€ ์ ์ ˆํ•˜๊ฒŒ ๊ฒ€์ฆ๋˜์ง€ ๋ชปํ–ˆ๋‹ค๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์—ˆ๊ณ , ๋˜ํ•œ ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์„ ์œ„ํ•œ ์ƒ์ฒด ์‹ ํ˜ธ๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๋ถ€๋ถ„ ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋“ˆ์„ ํ•„์š”๋กœ ํ•˜๋ฉด์„œ ์‹ค์šฉ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„์ ์ด ์žˆ์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์ƒ์ฒด์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋“ค์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ž„์ƒ์ ์œผ๋กœ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๊ฐ€ ์ ์ ˆํžˆ ๊ฒ€์ฆ๋œ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 1376๋ช…์˜ ์ˆ˜์ˆ  ์ค‘ ํ™˜์ž๋“ค์˜ ์•ฝ 250๋งŒ ์‹ฌ๋ฐ• ์ฃผ๊ธฐ์— ๋Œ€ํ•ด ์ธก์ •๋œ ๋‘ ๊ฐ€์ง€ ๋น„์นจ์Šต์  ์ƒ์ฒด์‹ ํ˜ธ์ธ ์‹ฌ์ „๋„์™€ ๊ด‘์šฉ์ ๋งฅํŒŒ๋ฅผ ํ™œ์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ๋ฐฉ์‹๋“ค์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„, ์‹ฌ๋ฐ•์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์–‘ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ํŒŒํ˜• ํ”ผ์ฒ˜๋“ค์„ ํฌํ•จํ•˜๋Š” ์ด 42 ์ข…๋ฅ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ํ”ผ์ฒ˜ ์„ ํƒ ๊ธฐ๋ฒ•๋“ค์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, 28๊ฐœ์˜ ํ”ผ์ฒ˜๋“ค์ด ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ฒฐ์ •๋˜์—ˆ๊ณ , ํŠนํžˆ ๋‘ ๊ฐ€์ง€ ๊ด‘์šฉ์ ๋งฅํŒŒ ํ”ผ์ฒ˜๋“ค์ด ๊ธฐ์กด์— ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ฐ€์žฅ ์ฃผ์š”ํ•˜๊ฒŒ ํ™œ์šฉ๋˜์—ˆ๋˜ ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„๋ณด๋‹ค ์šฐ์›”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์„ ์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ํ˜ˆ์••์˜ ๋‚ฎ์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ์ธ๊ณต์‹ ๊ฒฝ๋ง์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๋†’์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ์ˆœํ™˜์‹ ๊ฒฝ๋ง์œผ๋กœ ๋ชจ๋ธ๋ง ํ•œ ๊ฒฐ๊ณผ, ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.05 ยฑ 6.92 mmHg์™€ ์ด์™„๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ -0.05 ยฑ 3.99 mmHg ์ •๋„์˜ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ ๋‹ค๋ฅธ ์ƒ์ฒด์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ถ”์ถœํ•œ 334๋ช…์˜ ์ค‘ํ™˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋ชจ๋ธ์„ ์™ธ๋ถ€ ๊ฒ€์ฆํ–ˆ์„ ๋•Œ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ํš๋“ํ•˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์  ํ˜ˆ์•• ์ธก์ • ์žฅ๋น„ ๊ธฐ์ค€๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์ด 1000๋ช… ์ด์ƒ์˜ ๋‹ค์–‘ํ•œ ํ”ผํ—˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ ์ƒํ™œ ์ค‘ ์žฅ๊ธฐ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ๊ฐ€๋Šฅํ•œ ๋‹จ์ผ ์ฐฉ์šฉํ˜• ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ํ˜ˆ์•• ์ถ”์ • ์—ฐ๊ตฌ๋“ค์€ ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ์ƒ์ฒด์‹ ํ˜ธ๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ตฐ๋ฐ ์ด์ƒ์˜ ์‹ ์ฒด ์ง€์ ์— ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋“ˆ์„ ๋ถ€์ฐฉํ•˜๋Š” ๋“ฑ ์‹ค์šฉ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ฌ์ „๋„์™€ ๊ด‘์šฉ์ ๋งฅํŒŒ๋ฅผ ๋™์‹œ์— ์—ฐ์†์ ์œผ๋กœ ์ธก์ •ํ•˜๋Š” ๋‹จ์ผ ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ๋””๋ฐ”์ด์Šค๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ๊ฐœ๋ฐœ๋œ ๋””๋ฐ”์ด์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ด 25๋ช…์˜ ๊ฑด๊ฐ•ํ•œ ํ”ผํ—˜์ž๋“ค๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ํš๋“ํ•˜์˜€๋‹ค. ์†๊ฐ€๋ฝ์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ์™€ ๊ฐ€์Šด์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ ๊ฐ„ ํŒŒํ˜•์˜ ํŠน์„ฑ์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์Šด์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ์—์„œ ์ถ”์ถœ๋œ ํ”ผ์ฒ˜๋“ค์„ ๋Œ€์‘๋˜๋Š” ์†๊ฐ€๋ฝ์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ ํ”ผ์ฒ˜๋“ค๋กœ ํŠน์„ฑ์„ ๋ณ€ํ™˜ํ•˜๋Š” ์ „๋‹ฌ ํ•จ์ˆ˜ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. 25๋ช…์œผ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•œ ๋ฐ์ดํ„ฐ์— ์ „๋‹ฌ ํ•จ์ˆ˜ ๋ชจ๋ธ์„ ์ ์šฉ์‹œํ‚จ ํ›„ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ, ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.54 ยฑ 7.47 mmHg์™€ ์ด์™„๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.29 ยฑ 4.33 mmHg๋กœ ๋‚˜ํƒ€๋‚˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ํ˜ˆ์•• ์ธก์ • ์žฅ๋น„ ๊ธฐ์ค€๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„์ƒ์ ์œผ๋กœ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋กœ ์žฅ๊ธฐ๊ฐ„ ์ผ์ƒ ์ƒํ™œ์ด ๊ฐ€๋Šฅํ•œ ๋น„์นจ์Šต์  ์—ฐ์† ๋™๋งฅ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ๋‹ค์ˆ˜์˜ ๋ฐ์ดํ„ฐ์…‹์„ ๋Œ€์ƒ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ ๊ณ ํ˜ˆ์•• ์กฐ๊ธฐ ์ง„๋‹จ ๋ฐ ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ๋ชจ๋ฐ”์ผ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.As non-invasive continuous blood pressure monitoring (NCBPM) has gained wide attraction in the recent decades, many studies on blood pressure (BP) estimation using pulse transit time (PTT), pulse arrival time (PAT), and characteristics extracted from the morphology of photoplethysmogram (PPG) waveform as indicators of BP have been conducted. However, most of the studies have used small homogeneous subject pools to generate models of BP, which led to inconsistent results in terms of accuracy. Furthermore, the previously proposed modalities to measure BP indicators are questionable in terms of practicality, and lack the potential for being utilized in daily life. The first goal of this thesis is to develop a BP estimation model with clinically valid accuracy using a large pool of heterogeneous subjects undergoing various surgeries. This study presents analyses of BP estimation methods using 2.4 million cardiac cycles of two commonly used non-invasive biosignals, electrocardiogram (ECG) and PPG, from 1376 surgical patients. Feature selection methods were used to determine the best subset of predictors from a total of 42 including PAT, heart rate, and various PPG morphology features. BP estimation models were constructed using linear regression, random forest, artificial neural network (ANN), and recurrent neural network (RNN), and the performances were evaluated. 28 features out of 42 were determined as suitable for BP estimation, in particular two PPG morphology features outperformed PAT, which has been conventionally seen as the best non-invasive indicator of BP. By modelling the low frequency component of BP using ANN and the high frequency component using RNN with the selected predictors, mean errors of 0.05 ยฑ 6.92 mmHg for systolic blood pressure (SBP), and -0.05 ยฑ 3.99 mmHg for diastolic blood pressure (DBP) were achieved. External validation of the model using another biosignal database consisting of 334 intensive care unit patients led to similar results, satisfying three international standards concerning the accuracy of BP monitors. The results indicate that the proposed method can be applied to large number of subjects and various subject phenotypes. The second goal of this thesis is to develop a wearable BP monitoring system, which facilitates NCBPM in daily life. Most previous studies used two or more modules with bulky electrodes to measure biosignals such as ECG and PPG for extracting BP indicators. In this study, a single wireless chest-worn device measuring ECG and PPG simultaneously was developed. Biosignal data from 25 healthy subjects measured by the developed device were acquired, and the BP estimation model developed above was tested on this data after applying a transfer function mapping the chest PPG morphology features to the corresponding finger PPG morphology features. The model yielded mean errors of 0.54 ยฑ 7.47 mmHg for SBP, and 0.29 ยฑ 4.33 mmHg for DBP, again satisfying the three standards for the accuracy of BP monitors. The results indicate that the proposed system can be a stepping stone to the realization of mobile NCBPM in daily life. In conclusion, the clinical validity of the proposed system was checked in three different datasets, and it is a practical solution to NCBPM due to its non-occlusive form as a single wearable device.Abstract i Contents iv List of Tables vii List of Figures viii Chapter 1 General Introduction 1 1.1 Need for Non-invasive Continuous Blood Pressure Monitoring (NCBPM) 2 1.2 Previous Studies for NCBPM 5 1.3 Issues with Previous Studies 9 1.4 Thesis Objectives 12 Chapter 2 Non-invasive Continuous Arterial Blood Pressure Estimation Model in Large Population 14 2.1 Introduction 15 2.1.1 Electrocardiogram (ECG) and Photoplethysmogram (PPG) Features for Blood Pressure (BP) Estimation 15 2.1.2 Description of Surgical Biosignal Databases 16 2.2 Feature Analysis 19 2.2.1 Data Acquisition and Data Pre-processing 19 2.2.2 Feature Extraction 25 2.2.3 Feature Selection 35 2.3 Construction of the BP Estimation Models 44 2.3.1 Frequency Component Separation 44 2.3.2 Modelling Algorithms 47 2.3.3 Summary of Training and Validation 52 2.4 Results and Discussion 54 2.4.1 Feature Analysis 54 2.4.1.1 Pulse Arrival Time versus Pulse Transit Time 54 2.4.1.2 Feature Selection 57 2.4.2 Optimization of the BP Estimation Models 63 2.4.2.1 Frequency Component Separation 63 2.4.2.2 Modelling Algorithms 66 2.4.2.3 Comparison against Different Modelling Settings 68 2.4.3 Performance of the Best-case BP Estimation Model 69 2.4.4 Limitations 75 2.5 Conclusion 78 Chapter 3 Development of the Single Chest-worn Device for Non-invasive Continuous Arterial Blood Pressure Monitoring 80 3.1 Introduction 81 3.2 Development of the Single Chest-worn Device 84 3.2.1 Hardware Development 84 3.2.2 Software Development 90 3.2.3 Clinical Trial 92 3.3 Development of the Transfer Function 95 3.3.1 Finger PPG versus Chest PPG 95 3.3.2 The Concept of the Transfer Function 97 3.3.3 Data Acquisition for Modelling of the Transfer Function 98 3.4 Results and Discussion 100 3.4.1 Construction of the Transfer Function 100 3.4.2 Test of the BP Estimation Model 101 3.4.3 Comparison with the Previous Study using the Single Chest-worn Device 104 3.4.4 Limitations 106 3.5 Conclusion 108 Chapter 4 Thesis Summary and Future Direction 109 4.1 Summary and Contributions 110 4.2 Future Work 113 Bibliography 115 Abstract in Korean 129 Acknowledgement 132Docto

    Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning

    Get PDF
    Exploiting photoplethysmography signals (PPG) for non-invasive blood pressure (BP) measurement is interesting for various reasons. First, PPG can easily be measured using fingerclip sensors. Second, camera based approaches allow to derive remote PPG (rPPG) signals similar to PPG and therefore provide the opportunity for non-invasive measurements of BP. Various methods relying on machine learning techniques have recently been published. Performances are often reported as the mean average error (MAE) on the data which is problematic. This work aims to analyze the PPG- and rPPG based BP prediction error with respect to the underlying data distribution. First, we train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals. Second, we use this parameterization to train NNs with a larger PPG dataset and carry out a systematic evaluation of the predicted blood pressure. The analysis revealed a strong systematic increase of the prediction error towards less frequent BP values across NN architectures. Moreover, we tested different train/test set split configurations which underpin the importance of a careful subject-aware dataset assignment to prevent overly optimistic results. Third, we use transfer learning to train the NNs for rPPG based BP prediction. The resulting performances are similar to the PPG-only case. Finally, we apply different personalization techniques and retrain our NNs with subject-specific data for both the PPG-only and rPPG case. Whilst the particular technique is less important, personalization reduces the prediction errors significantly

    Continuous blood pressure estimation using exclusively photopletysmography by LSTM-based signal-to-signal translation

    Get PDF
    Monitoring continuous BP signal is an important issue, because blood pressure (BP) varies over days, minutes, or even seconds for short-term cases. Most of photoplethysmography (PPG)-based BP estimation methods are susceptible to noise and only provides systolic blood pressure (SBP) and diastolic blood pressure (DBP) prediction. Here, instead of estimating a discrete value, we focus on different perspectives to estimate the whole waveform of BP. We propose a novel deep learning model to learn how to perform signal-to-signal translation from PPG to arterial blood pressure (ABP). Furthermore, using a raw PPG signal only as the input, the output of the proposed model is a continuous ABP signal. Based on the translated ABP signal, we extract the SBP and DBP values accordingly to ease the comparative evaluation. Our prediction results achieve average absolute error under 5 mmHg, with 70% confidence for SBP and 95% confidence for DBP without complex feature engineering. These results fulfill the standard from Association for the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) with grade A. From the results, we believe that our model is applicable and potentially boosts the accuracy of an effective signal-to-signal continuous blood pressure estimation

    Cuffless bood pressure estimation

    Get PDF
    L'hypertension est une maladie qui affecte plus d'un milliard de personnes dans le monde. Il s'agit d'une des principales causes de dรฉcรจs; le suivi et la gestion de cette maladie sont donc cruciaux. La technologie de mesure de la pression artรฉrielle la plus rรฉpandue, utilisant le brassard pressurisรฉ, ne permet cependant pas un suivi en continu de la pression, ce qui limite l'รฉtendue de son utilisation. Ces obstacles pourraient รชtre surmontรฉs par la mesure indirecte de la pression par l'entremise de l'รฉlectrocardiographie ou de la photoplรฉthysmographie, qui se prรชtent ร  la crรฉation d'appareils portables, confortables et peu coรปteux. Ce travail de recherche, rรฉalisรฉ en collaboration avec le dรฉpartement d'ingรฉnierie biomรฉdicale de l'universitรฉ de Lund, en Suรจde, porte principalement sur la base de donnรฉes publique Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Datasetde PhysioNet, largement utilisรฉe dans la littรฉrature portant sur le dรฉveloppement et la validation d'algorithmes d'estimation de la pression artรฉrielle sans brassard pressurisรฉ. Puisque ces donnรฉes proviennent d'unitรฉs de soins intensifs et ont รฉtรฉ recueillies dans des conditions non contrรดlรฉes, plusieurs chercheurs ont avancรฉ que les modรจles d'estimation de la pression artรฉrielle se basant sur ces donnรฉes ne sont pas valides pour la population gรฉnรฉrale. Pour la premiรจre fois dans la littรฉrature, cette hypothรจse est ici mise ร  l'รฉpreuve en comparant les donnรฉes de MIMIC ร  un ensemble de donnรฉes de rรฉfรฉrence plus reprรฉsentatif de la population gรฉnรฉrale et recueilli selon une procรฉdure expรฉrimentale bien dรฉfinie. Des tests statistiques rรฉvรจlent une diffรฉrence significative entre les ensembles de donnรฉes, ainsi qu'une rรฉponse diffรฉrente aux changements de pression artรฉrielle, et ce, pour la majoritรฉ des caractรฉristiques extraites du photoplรฉthysmogramme. De plus, les rรฉpercussions de ces diffรฉrences sont dรฉmontrรฉes ร  l'aide d'un test pratique d'estimation de la pression artรฉrielle par apprentissage machine. En effet, un modรจle entraรฎnรฉ sur l'un des ensembles de donnรฉes perd en grande partie sa capacitรฉ prรฉdictive lorsque validรฉ sur l'autre ensemble, par rapport ร  sa performance en validation croisรฉe sur l'ensemble d'entraรฎnement. Ces rรฉsultats constituent les contributions principales de ce travail et ont รฉtรฉ soumis sous forme d'article ร  la revue Physiological Measurement. Un volet additionnel de la recherche portant sur l'analyse du pouls par dรฉcomposition (pulse de composition analysis ou PDA) est prรฉsentรฉ dans un deuxiรจme temps. La PDA est une technique permettant de sรฉparer l'onde du pouls en une composante excitative et ses rรฉflexions, utilisรฉe pour extraire des caractรฉristiques du signal dans le contexte de l'estimation de la pression artรฉrielle. Les rรฉsultats obtenus dรฉmontrent que l'estimation de la position temporelle des rรฉflexions ร  partir de points de rรฉfรฉrence de la dรฉrivรฉe seconde du signal donne d'aussi bons rรฉsultats que leur dรฉtermination par la mรฉthode traditionnelle d'approximation successive, tout en รฉtant beaucoup plus rapide. Une mรฉthode rรฉcursive rapide de PDA est รฉgalement รฉtudiรฉe, mais dรฉmontrรฉe comme inadรฉquate dans un contexte de comparaison intersujet.Hypertension affects more than one billion people worldwide. As one of the leading causes of death, tracking and management of the condition is critical, but is impeded by the current cuff-based blood pressure monitoring technology. Continuous and more ubiquitous blood pressure monitoring may be achieved through simpler, cheaper and less invasive cuff-less devices, performing an indirect measure through electrocardiography or photoplethysmography. Produced in collaboration with the department of biomedical engineering of Lund Universityin Sweden, this work focuses on public data that has been widely used in the literature to develop and validate cuffless blood pressure estimation algorithms: The Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Waveform Dataset from PhysioNet. Because it is sourced from intensive care units and collected in absence of controlled conditions, it has many times been hypothesized that blood pressure estimation models based on its data may not generalize to the normal population. This work tests that hypothesis for the first time by comparing the MIMIC dataset to another reference dataset more representative of the general population and obtained under controlled experimental conditions. Through statistical testing, a majority of photoplethysmogram based features extracted from MIMIC are shown to differ significantly from the reference dataset and to respond differently to blood pressure changes. In addition, the practical impact of those differences is tested through the training and cross validating of machine learning models on both datasets, demonstrating an acute loss of predictive powers of models facing data from outside the dataset used in the training phase. As the main contribution of this work, these findings have been submitted as a journal paper to Physiological Measurement. Additional original research is also presented in relation to pulse decomposition analysis (PDA), a technique used to separate the pulse wave from its reflections, in the context of blood pressure estimation. The results obtained through this work show that when using the timing of reflections as part of blood pressure predictors, estimating those timings from fiducial points in the second derivative works as well as using the traditional and computationally costly successive approximation PDA method, while being many times faster. An alternative fast recursive PDA algorithm is also presented and shown to perform inadequately in an inter-subject comparison context
    corecore