70 research outputs found

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system

    Applications of Artificial Intelligence Techniques in Optimizing Drilling

    Get PDF
    Artificial intelligence has transformed the industrial operations. One of the important applications of artificial intelligence is reducing the computational costs of optimization. Various algorithms based on their assumptions to solve problems have been presented and investigated, each of which having assumptions to solve the problems. In this chapter, firstly, the concept of optimization is fully explained. Then, an artificial bee colony (ABC) algorithm is used on a case study in the drilling industry. This algorithm optimizes the problem of study in combination with ANN modeling. At the end, various models are fully developed and discussed. The results of the algorithm show that by better understanding the drilling data, the conditions can be improved

    Cuckoo Search Algorithm with Hybrid Factor Using Dimensional Distance

    Get PDF

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms

    Dual objective oil and gas field development project optimization of stochastic time cost tradeoff problems

    Get PDF
    Conducting stochastic-time-cost-tradeoff-problem (STCTP) analysis beneficially extends the scope of discrete project duration-cost analysis for oil and gas field development projects. STCTP can be particularly insightful when using a dual-objective optimization approach to locate minimum-total-project-cost solutions, and to additionally derive a Pareto frontier of non-dominated-total-project-cost solutions across a wide range of potential project durations. For STCTP project-work-item durations and costs are expressed as probability distributions and sampled with random numbers (0, 1). By controlling the fractional numbers used to sample the work-item cost distributions by formulas linked to the random numbers used to sample the work-item duration distribution, a wide range of complex time-cost relationships are readily applied. The memetic algorithm developed for constrained STCTP involves ten metaheuristics configured to focus partly on local exploitation and partly on exploration of the feasible solution space. This dual focus effectively delivers the dual objective of: 1) locating the global minimum total-project- cost solution, if it exists, or the region in the vicinity of where that solution exists; and, 2) developing a Pareto frontier. Analysis of an example project, applying eight distinct work-item time-cost relationships, demonstrates with the aid of metaheuristic profiling, that the memetic STCTP algorithm coded in Visual Basic for Applications and operated in Microsoft Excel effectively delivers on both objectives. Dynamic adjustment factors applied by some metaheuristics, derived from fat-tailed distributions adjusted by chaotic sequences, aid the efficient sampling of the feasible solution space. The metaheuristic profiles also help to fine tune the configuration of the algorithm to further enhance performance for specific work-item time-cost relationships.Cited as: Wood, D.A. Dual objective oil and gas field development project optimization of stochastic time cost tradeoff problems. Advances in Geo-Energy Research, 2018, 2(1): 14-33, doi: 10.26804/ager.2018.01.0

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure
    corecore