48 research outputs found

    Parameter calibration of a system dynamics model. A comparison of three evolutionary algorithms

    Get PDF
    This research seeks to improve the parameter calibration process of a System Dynamics model. A movie release strategies" model has been developed in 2012 using a gradient-based optimization algorithm to estimate all the parameters. On this research, three modern optimization algorithms are initially compared using mathematical benchmark functions and then tested with the model to compare results. The tested algorithms are modifications of the Artificial Bee Colony algorithm, the Cuckoo Search and the Genetic Sampler. The results show that by using the Artificial Bee Colony algorithm, better performance is achieved in terms of speed and fitness. It is also shown how the optimization problem definition was improved resulting from a better optimization process.GEO-SD360JMASV-SYS

    An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation

    Get PDF
    Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t -way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, metaheuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyperheuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS),using the t -way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance

    Ringed Seal Search for Global Optimization via a Sensitive Search Model.

    Get PDF
    The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behav-ior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emit-ted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and valida-tions were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of conver-gence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems

    Enhancement of bees algorithm for global optimisation

    Get PDF
    This research focuses on the improvement of the Bees Algorithm, a swarm-based nature-inspired optimisation algorithm that mimics the foraging behaviour of honeybees. The algorithm consists of exploitation and exploration, the two key elements of optimisation techniques that help to find the global optimum in optimisation problems. This thesis presents three new approaches to the Bees Algorithm in a pursuit to improve its convergence speed and accuracy. The first proposed algorithm focuses on intensifying the local search area by incorporating Hooke and Jeeves’ method in its exploitation mechanism. This direct search method contains a pattern move that works well in the new variant named “Bees Algorithm with Hooke and Jeeves” (BA-HJ). The second proposed algorithm replaces the randomly generated recruited bees deployment method with chaotic sequences using a well-known logistic map. This new variant called “Bees Algorithm with Chaos” (ChaosBA) was intended to use the characteristic of chaotic sequences to escape from local optima and at the same time maintain the diversity of the population. The third improvement uses the information of the current best solutions to create new candidate solutions probabilistically using the Estimation Distribution Algorithm (EDA) approach. This new version is called Bees Algorithm with Estimation Distribution (BAED). Simulation results show that these proposed algorithms perform better than the standard BA, SPSO2011 and qABC in terms of convergence for the majority of the tested benchmark functions. The BA-HJ outperformed the standard BA in thirteen out of fifteen benchmark functions and is more effective in eleven out of fifteen benchmark functions when compared to SPSO2011 and qABC. In the case of the ChaosBA, the algorithm outperformed the standard BA in twelve out of fifteen benchmark functions and significantly better in eleven out of fifteen test functions compared to qABC and SPSO2011. BAED discovered the optimal solution with the least number of evaluations in fourteen out of fifteen cases compared to the standard BA, and eleven out of fifteen functions compared to SPSO2011 and qABC. Furthermore, the results on a set of constrained mechanical design problems also show that the performance of the proposed algorithms is comparable to those of the standard BA and other swarm-based algorithms from the literature

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future
    corecore