447 research outputs found

    Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder

    Get PDF
    [[abstract]]This paper reports a two dimensional time domain inverse scattering algorithm based upon the finite-difference time domain method for determining the shape of perfectly conducting cylinder. Finite difference time domain method (FDTD) is used to solve the scattering electromagnetic wave of a perfectly conducting cylinder. The inverse problem is resolved by an optimization approach and the global searching scheme asynchronous particle swarm optimization (APSO) is then employed to search the parameter space. By properly processing the scattered field, some EM properties can be reconstructed. One is the location of the conducting cylinder, the others is the shape of the perfectly conducting cylinder. This method is tested by several numerical examples; numerical results indicate that the APSO outperforms the PSO in terms of reconstruction accuracy and convergence speed. Both techniques have been tested in the case of simulated measurements contaminated by additive white Gaussian noise.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙

    Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution

    Get PDF
    [[abstract]]The inverse problem under consideration is to reconstruct the characteristic of scatterer from the scattering E field. Dynamic differential evolution (DDE) and self-adaptive dynamic differential evolution (SADDE) are stochastic-type optimization approach that aims to minimize a cost function between measurements and computer-simulated data. These algorithms are capable of retrieving the location, shape, and permittivity of the dielectric cylinder in a slab medium made of lossless materials. The finite-difference time-domain (FDTD) is employed for the analysis of the forward scattering. The comparison is carried out under the same conditions of initial population of candidate solutions and number of iterations. Numerical results indicate that SADDE outperforms the DDE a little in terms of reconstruction accuracy.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Time Domain Inverse Scattering for a Buried Homogeneous Cylinder in a Slab Medium Using NU-SSGA

    Get PDF
    [[abstract]]A time-domain inverse scattering technique for reconstructing a buried homogeneous cylinder with arbitrary cross section in a slab medium is proposed. For the forward scattering, the FDTD method is employed to calculate the scattered E fields. Base on the scattering fields, these inverse scattering problems are transformed into optimization problems. The non-uniform steady state genetic algorithm (NU-SSGA) is applied to reconstruct the location shape and permittivity of the two-dimensional homogeneous dielectric cylinder. The NU-SSGA is a population-based optimization approach that aims to minimize the objective function between measurements and computer-simulated data. A set of representative numerical results is presented for demonstrating that the proposed approach is able to efficiently reconstruct the electromagnetic properties of homogeneous dielectric scatterer even when the initial guess is far away from the exact one. In addition, the effects of Gaussian noises on the image reconstruction are also investigated.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]電子

    Microwave imaging of a partially immersed non-uniform conducting cylinder

    Get PDF
    [[abstract]]In this paper, we investigate the imaging problem to determine both the shape and the conductivity of a partially immersed non-uniform conducting cylinder from the knowledge of scattered far-field pattern of TM waves by solving the ill-posed nonlinear equation. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equations is derived and the inverse problem is reformulated into an optimization one. The steady-state genetic algorithm is then employed to find out the global extreme solution of the object function. As a result, the shape and the conductivity of the conductor can be obtained. Numerical results are given to demonstrate that even in the presence of noise, good reconstruction can be obtained.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]電子

    Image Reconstruction for 2D Homogeneous Dielectric Cylinder Using FDTD Method and SSGA

    Get PDF
    [[abstract]]This paper presents an image reconstruction approach for a 2-D homogeneous cylinder with arbitrary cross section in free space. The computational method combines the finite difference time domain (FDTD) method and non-uniform steady state genetic algorithm (NU-SSGA) to determine the shape and location of the scatterer with arbitrary shape. The subgirdding technique is implemented for modeling the shape of the cylinder more closely. The inverse problem is reformulated into an optimization problem and the global searching scheme NU-SSGA with closed cubic-spline is then employed to search the parameter space. A set of representative numerical results is presented for demonstrating that the proposed approach is able to efficiently reconstruct the electromagnetic properties of homogeneous dielectric scatterer even when the initial guess is far away from the exact one. In addition, the effects of Gaussian noises on imaging reconstruction are also investigated.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙

    Time Domain Microwave Imaging for a Buried Dielectric Cylinder by Dynamic Differential Evolution

    Get PDF
    [[abstract]]This paper presents the studies of time domain inverse scattering for a two dimensional homogeneous dielectric cylinder buried in a half-space which are based on the finite difference time domain (FDTD) method and the dynamic differential evolution (DDE). For the forward scattering, the FDTD method is employed to calculate the scattered E fields, while for the inverse scattering the DDE scheme is utilized to determine the shape, location and the permittivity of the buried cylindrical scatterer with arbitrary cross section. The subgirdding technique is implemented for the FDTD code in order to model the shape of the cylinder more smoothly. In additions, in order to describe an unknown cylinder with arbitrary cross section more effectively during the course of searching, the closed cubic-spline expansion is adopted to represent the scatterer contour instead of the frequently used trigonometric series. Numerical results demonstrate that, even when the initial guess is far away from the exact one, good reconstruction can be obtained. In addition, the effects of Gaussian noise on the reconstruction results are investigated. Numerical results show that even the measured scattered fields are contaminated with Gaussian noise, DDE is able to yield good reconstructed quality.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙

    Electromagnetic scattering of metallic cylinders of arbitrary shape by using asynchronous particle swarm optimization and non-uniform steady state genetic algorithm

    Get PDF
    [[abstract]]Two techniques for the shape reconstruction of multiple metallic cylinders from scattered fields are investigated in this paper, in which two-dimensional configurations are involved. After an integral formulation, the method of moment (MoM) is applied to solve it numerically. Two separate perfect-conducting cylinders of unknown shapes are buried in one half-space and illuminated by the transverse magnetic (TM) plane wave from the other half space. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem. The non-uniform steady state genetic algorithm (NU-SSGA) and asynchronous particle swarm optimization (APSO) are employed to find out the global extreme solution of the object function. Numerical results demonstrate even when the initial guesses are far away from the exact shapes, and the multiple scattered fields between two conductors are serious, good reconstruction can be obtained. In addition, the effect of Gaussian noise on the reconstruction results is investigated and the numerical simulation shows that the reconstruction results are good and acceptable, as long as the SNR is greater than 20 dB.[[incitationindex]]SCI[[booktype]]電子版[[booktype]]紙

    Comparison of Particle Swarm Optimization and Self-Adaptive Dynamic Differential Evolution for the Imaging of a Periodic Conductor

    Get PDF
    [[abstract]]The application of two techniques to reconstruct the shape of a two-dimensional periodic perfect conductor from mimic the measurement data is presented. A periodic conducting cylinder of unknown periodic length and shape scatters the incident wave in half-space and the scattered field is recorded outside. After an integral formulation, the microwave imaging is recast as a nonlinear optimization problem; a cost functional is defined by the norm of a difference between the measured scattered electric fields and the calculated scattered fields for an estimated shape of a conductor. Thus, the shape of conductor can be obtained by minimizing the cost function. In order to solve this inverse scattering problem, transverse magnetic (TM) waves are incident upon the objects and two techniques are employed to solve these problems. The first is based on an particle swarm optimization (PSO) and the second is a self-adaptive dynamic differential evolution (SADDE). Both techniques have been tested in the case of simulated mimic the measurement data contaminated by additive white Gaussian noise. Numerical results indicate that the SADDE algorithm is better than the PSO in reconstructed accuracy and convergence speed.[[notice]]補正完畢[[incitationindex]]SC

    Two- Dimensional Inverse Scattering Problems of PEC and Mixed Boundary Scatterers

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Computational Framework for A First-Order System of Conservation Laws in Thermoelasticity

    Get PDF
    It is evidently not trivial to analytically solve practical engineering problems due to their inherent (geometrical and/or material) nonlinearities. Moreover, experimental testing can be extremely costly, time-consuming and even dangerous, in some cases. In the past few decades, therefore, numerical techniques have been progressively developed and utilised in order to investigate complex engineering applications through computer simulations, in a cost-effective manner.An important feature of a numerical methodology is how to approximate a physical domain into a computational domain and that, typically, can be carried out via mesh-based and particle-based approximations, either of which manifest with a different range of capabilities. Due to the geometrical complexity of many industrial applications (e.g. biomechanics, shape casting, metal forming, additive manufactur-ing, crash simulations), a growing attraction has been received by tetrahedral mesh generation, thanks to Delaunay and advancing front techniques [1, 2]. Alternatively, particle-based methods can be used as they offer the possibility of tackling specific applications in which mesh-based techniques may not be efficient (e.g. hyper velocity impact, astrophysics, failure simulations, blast).In the context of fast thermo-elastodynamics, modern commercial packages are typically developed on the basis of second order displacement-based finite element formulations and, unfortunately, that introduces a series of numerical shortcomings such as reduced order of convergence for strains and stresses in comparison with displacements and the possible onset of numerical instabilities (e.g. detrimental locking, hour-glass modes, spurious pressure oscillations).To rectify these drawbacks, a mixed-based set of first order hyperbolic conservation laws for isothermal elastodynamics was presented in [3–6], in terms of the linear momentum p per unit undeformed volume and the minors of the deformation, namely, the deformation gradient F , its co-factor H and its Jacobian J. Taking inspiration of these works [4, 7] and in order to account for irreversible processes, the balance of total energy (also known as the first law of thermodynamics) is incorporated to the set of physical laws used to describe the deformation process. This, in general, can be expressed in terms of the entropy density η or total energy density E by which the Total Lagrangian entropy-based and total energy-based formulations {p, F , H, J, η or E} are established, respectively. Interestingly, taking advantage of the conservation formulation framework, it is possible to bridge the gap between solid dynamics and Computational Fluid Dynamics (CFD) by exploiting available CFD techniques in the context of solid dynamics.From a computational standpoint, two distinct and extremely competitive spatial discretisations are employed, namely, mesh-based Vertex-Centred Finite Volume Method (VCFVM) and meshless Smooth Particle Hydrodynamics (SPH). A linear reconstruction procedure together with a slope limiter is employed in order to ensure second order accuracy in space whilst avoiding numerical oscillations in the vicinity of sharp gradients, respectively. Crucially, the discontinuous solution for the conservation variables across (dual) control volume interfaces or between any pair of particles is approximated via an acoustic Riemann solver. In addition, a tailor-made artificial compressibility algorithm and an angular momentum preservation scheme are also incorporated in order to assess same limiting scenarios.The semi-discrete system of equations is then temporally discretised using a one-step two-stage Total Variation Diminishing (TVD) Runge-Kutta time integrator, providing second order accuracy in time. The geometry is also monolithically updated to be only used for post-processing purposes.Finally, a wide spectrum of challenging examples is presented in order to assess both the performance and applicability of the proposed schemes. The new formulation is proven to be very efficient in nearly incompressible thermo-elasticity in comparison with classical finite element displacement-based approaches. The proposed computational framework provides a good balance between accuracy and speed of computation
    corecore