41 research outputs found

    Distributed Estimation with Information-Seeking Control in Agent Network

    Get PDF
    We introduce a distributed, cooperative framework and method for Bayesian estimation and control in decentralized agent networks. Our framework combines joint estimation of time-varying global and local states with information-seeking control optimizing the behavior of the agents. It is suited to nonlinear and non-Gaussian problems and, in particular, to location-aware networks. For cooperative estimation, a combination of belief propagation message passing and consensus is used. For cooperative control, the negative posterior joint entropy of all states is maximized via a gradient ascent. The estimation layer provides the control layer with probabilistic information in the form of sample representations of probability distributions. Simulation results demonstrate intelligent behavior of the agents and excellent estimation performance for a simultaneous self-localization and target tracking problem. In a cooperative localization scenario with only one anchor, mobile agents can localize themselves after a short time with an accuracy that is higher than the accuracy of the performed distance measurements.Comment: 17 pages, 10 figure

    A Sensor Self-aware Distributed Consensus Filter for Simultaneous Localization and Tracking

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordBackground/Introduction: Simultaneous localization and tracking (SLAT) has become a very hot topic in both academia and industry for its potential wide applications in robotic equipment, sensor networks and smart devices. In order to exploit the advantages supported by state filtering and parameter estimation, researchers have proposed adaptive structures for solving SLAT problems. Existing solutions for SLAT problems that rely on belief propagation often have limited accuracy or high complexity. To adapt the brain decision mechanism for solving SLAT problems, we introduce a specific framework that is suitable for wireless sensor networks. Methods: Motivated by the high efficiency and performance of brain decision making built upon partial information and information updating, we propose a cognitively distributed SLAT algorithm based on an adaptive distributed filter, which is composed of two stages for target tracking and sensor localization. The first stage is consensus filtering that updates the target state with respect to each sensor. The second stage employs a recursive parameter estimation that exploits an on-line optimization method for refining the sensor localization. As an integrated framework, each consensus filter is specific to a separate sensor subsystem and gets feedback information from its parameter estimation. Results: The performance comparison in terms of positioning accuracy with respect to RMSE is shown and the simulation results demonstrate that the proposed ICF-RML performs better than the BPF-RML. This is expected since the distributed estimation with sufficient communication mechanism often achieves higher accuracy than that of less sufficient cases. Furthermore, the performance of the ICF-RML is comparable with that of the BPF-RML even if the latter assumes known prior network topology. We also observe from the results of tracking errors that ICF-RML accomplishes a remarkable improvement in the precision of target tracking and achieves more stable convergence than BPF-RML, in the scenario that all sensors are used to calculate the effect from data association errors. Conclusion: We apply this approach to formulate the SLAT problem and propose an effective solution, summarized in the paper. For small-size sensor networks with Gaussian distribution, our algorithm can be implemented through a distributed version of weighted information filter and a consensus protocol. Comparing the existing method, our solution shows a higher accuracy in estimation but with less complexity.National Natural Science Foundation of ChinaShandong Provincial Natural Science FoundationShandong Outstanding Young Scientist FundRoyal SocietyFundamental Research Funds for the Central Universitie

    Autonomous Swarm Navigation

    Get PDF
    Robotic swarm systems attract increasing attention in a wide variety of applications, where a multitude of self-organized robotic entities collectively accomplish sensing or exploration tasks. Compared to a single robot, a swarm system offers advantages in terms of exploration speed, robustness against single point of failures, and collective observations of spatio-temporal processes. Autonomous swarm navigation, including swarm self-localization, the localization of external sources, and swarm control, is essential for the success of an autonomous swarm application. However, as a newly emerging technology, a thorough study of autonomous swarm navigation is still missing. In this thesis, we systematically study swarm navigation systems, particularly emphasizing on their collective performance. The general theory of swarm navigation as well as an in-depth study on a specific swarm navigation system proposed for future Mars exploration missions are covered. Concerning swarm localization, a decentralized algorithm is proposed, which achieves a near-optimal performance with low complexity for a dense swarm network. Regarding swarm control, a position-aware swarm control concept is proposed. The swarm is aware of not only the position estimates and the estimation uncertainties of itself and the sources, but also the potential motions to enrich position information. As a result, the swarm actively adapts its formation to improve localization performance, without losing track of other objectives, such as goal approaching and collision avoidance. The autonomous swarm navigation concept described in this thesis is verified for a specific Mars swarm exploration system. More importantly, this concept is generally adaptable to an extensive range of swarm applications

    Cooperative mmWave PHD-SLAM with Moving Scatterers

    Full text link
    Using the multiple-model~(MM) probability hypothesis density~(PHD) filter, millimeter wave~(mmWave) radio simultaneous localization and mapping~(SLAM) in vehicular scenarios is susceptible to movements of objects, in particular vehicles driving in parallel with the ego vehicle. We propose and evaluate two countermeasures to track vehicle scatterers~(VSs) in mmWave radio MM-PHD-SLAM. First, locally at each vehicle, we generate and treat the VS map PHD in the context of Bayesian recursion, and modify vehicle state correction with the VS map PHD. Second, in the global map fusion process at the base station, we average the VS map PHD and upload it with self-vehicle posterior density, compute fusion weights, and prune the target with low Gaussian weight in the context of arithmetic average-based map fusion. From simulation results, the proposed cooperative mmWave radio MM-PHD-SLAM filter is shown to outperform the previous filter in VS scenarios

    A Localization Based on Unscented Kalman Filter and Particle Filter Localization Algorithms

    Get PDF
    Localization plays an important role in the field of Wireless Sensor Networks (WSNs) and robotics. Currently, localization is a very vibrant scientific research field with many potential applications. Localization offers a variety of services for the customers, for example, in the field of WSN, its importance is unlimited, in the field of logistics, robotics, and IT services. Particularly localization is coupled with the case of human-machine interaction, autonomous systems, and the applications of augmented reality. Also, the collaboration of WSNs and distributed robotics has led to the creation of Mobile Sensor Networks (MSNs). Nowadays there has been an increasing interest in the creation of MSNs and they are the preferred aspect of WSNs in which mobility plays an important role while an application is going to execute. To overcome the issues regarding localization, the authors developed a framework of three algorithms named Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Particle Filter (PF) Localization algorithms. In our previous study, the authors only focused on EKF-based localization. In this paper, the authors present a modified Kalman Filter (KF) for localization based on UKF and PF Localization. In the paper, all these algorithms are compared in very detail and evaluated based on their performance. The proposed localization algorithms can be applied to any type of localization approach, especially in the case of robot localization. Despite the harsh physical environment and several issues during localization, the result shows an outstanding localization performance within a limited time. The robustness of the proposed algorithms is verified through numerical simulations. The simulation results show that proposed localization algorithms can be used for various purposes such as target tracking, robot localization, and can improve the performance of localization

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Leader-assisted localization approach for a heterogeneous multi-robot system

    Get PDF
    This thesis presents the design, implementation, and validation of a novel leader assisted localization framework for a heterogeneous multi-robot system (MRS) with sensing and communication range constraints. It is assumed that the given heterogeneous MRS has a more powerful robot (or group of robots) with accurate self localization capabilities (leader robots) while the rest of the team (child robots), i.e. less powerful robots, is localized with the assistance of leader robots and inter-robot observation between teammates. This will eventually pose a condition that the child robots should be operated within the sensing and communication range of leader robots. The bounded navigation space therefore may require added algorithms to avoid inter-robot collisions and limit robots’ maneuverability. To address this limitation, first, the thesis introduces a novel distributed graph search and global pose composition algorithm to virtually enhance the leader robots’ sensing and communication range while avoiding possible double counting of common information. This allows child robots to navigate beyond the sensing and communication range of the leader robot, yet receive localization services from the leader robots. A time-delayed measurement update algorithm and a memory optimization approach are then integrated into the proposed localization framework. This eventually improves the robustness of the algorithm against the unknown processing and communication time-delays associated with the inter-robot data exchange network. Finally, a novel hierarchical sensor fusion architecture is introduced so that the proposed localization scheme can be implemented using inter-robot relative range and bearing measurements. The performance of the proposed localization framework is evaluated through a series of indoor experiments, a publicly available multi-robot localization and mapping data-set and a set of numerical simulations. The results illustrate that the proposed leader-assisted localization framework is capable of establishing accurate and nonoverconfident localization for the child robots even when the child robots operate beyond the sensing and communication boundaries of the leader robots

    Data Analysis and Memory Methods for RSS Bluetooth Low Energy Indoor Positioning

    Get PDF
    The thesis aims at finding a feasible solution to Bluetooth low energy indoor positioning (BLE-IP) including comprehensive data analysis of the received signal strength indication (RSSI) values. The data analysis of RSSI values was done to understand different factors influencing the RSSI values so as to gain better understanding of data generating process and to improve the data model. The positioning task is accomplished using a methodology called \textit{fingerprinting}. The fingerprinting based positioning involves two phases namely \textit{calibration phase} and \textit{localization phase}. The localization phase utilises the memory methods for positioning. In this thesis, we have used \textit{Gaussian process} for generation of radio maps and for localization we focus on memory methods: \textit{particle filters} and \textit{unscented Kalman filters}. The Gaussian process radio map is used as the measurement model in the Bayesian filtering context. The optimal fingerprinting phase parameters were determined and the filtering methods were evaluated in terms root mean square error

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore