11,856 research outputs found

    ‘Malaysian Cryptology and Information Security Lecture Series’ dibuat dalam talian

    Get PDF
    SERDANG, 14 Julai - Laboratori Kriptografi, Analisis dan Struktur, Institut Penyelidikan Matematik (INSPEM), Universiti Putra Malaysia (UPM) menganjurkan 5th Malaysian Cryptology and Information Security Lecture Series 2021 (MCISLS 2021) secara dalam talian menggunakan aplikasi Zoom

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Conditionals in Homomorphic Encryption and Machine Learning Applications

    Get PDF
    Homomorphic encryption aims at allowing computations on encrypted data without decryption other than that of the final result. This could provide an elegant solution to the issue of privacy preservation in data-based applications, such as those using machine learning, but several open issues hamper this plan. In this work we assess the possibility for homomorphic encryption to fully implement its program without relying on other techniques, such as multiparty computation (SMPC), which may be impossible in many use cases (for instance due to the high level of communication required). We proceed in two steps: i) on the basis of the structured program theorem (Bohm-Jacopini theorem) we identify the relevant minimal set of operations homomorphic encryption must be able to perform to implement any algorithm; and ii) we analyse the possibility to solve -- and propose an implementation for -- the most fundamentally relevant issue as it emerges from our analysis, that is, the implementation of conditionals (requiring comparison and selection/jump operations). We show how this issue clashes with the fundamental requirements of homomorphic encryption and could represent a drawback for its use as a complete solution for privacy preservation in data-based applications, in particular machine learning ones. Our approach for comparisons is novel and entirely embedded in homomorphic encryption, while previous studies relied on other techniques, such as SMPC, demanding high level of communication among parties, and decryption of intermediate results from data-owners. Our protocol is also provably safe (sharing the same safety as the homomorphic encryption schemes), differently from other techniques such as Order-Preserving/Revealing-Encryption (OPE/ORE).Comment: 14 pages, 1 figure, corrected typos, added introductory pedagogical section on polynomial approximatio

    On the Complexity of Solving Quadratic Boolean Systems

    Full text link
    A fundamental problem in computer science is to find all the common zeroes of mm quadratic polynomials in nn unknowns over F2\mathbb{F}_2. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4log2n2n4\log_2 n\,2^n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by O(20.841n)O(2^{0.841n}) when m=nm=n, while a probabilistic variant of the Las Vegas type has expected complexity O(20.792n)O(2^{0.792n}). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.Comment: 25 page

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page
    corecore