5,480 research outputs found

    Group theory in cryptography

    Full text link
    This paper is a guide for the pure mathematician who would like to know more about cryptography based on group theory. The paper gives a brief overview of the subject, and provides pointers to good textbooks, key research papers and recent survey papers in the area.Comment: 25 pages References updated, and a few extra references added. Minor typographical changes. To appear in Proceedings of Groups St Andrews 2009 in Bath, U

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Insecurity of Quantum Secure Computations

    Full text link
    It had been widely claimed that quantum mechanics can protect private information during public decision in for example the so-called two-party secure computation. If this were the case, quantum smart-cards could prevent fake teller machines from learning the PIN (Personal Identification Number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all ``one-sided'' two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any ``two-sided'' two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.Comment: The discussion on the insecurity of even non-ideal protocols has been greatly extended. Other technical points are also clarified. Version accepted for publication in Phys. Rev.

    Letter counting: a stem cell for Cryptology, Quantitative Linguistics, and Statistics

    Full text link
    Counting letters in written texts is a very ancient practice. It has accompanied the development of Cryptology, Quantitative Linguistics, and Statistics. In Cryptology, counting frequencies of the different characters in an encrypted message is the basis of the so called frequency analysis method. In Quantitative Linguistics, the proportion of vowels to consonants in different languages was studied long before authorship attribution. In Statistics, the alternation vowel-consonants was the only example that Markov ever gave of his theory of chained events. A short history of letter counting is presented. The three domains, Cryptology, Quantitative Linguistics, and Statistics, are then examined, focusing on the interactions with the other two fields through letter counting. As a conclusion, the eclectism of past centuries scholars, their background in humanities, and their familiarity with cryptograms, are identified as contributing factors to the mutual enrichment process which is described here

    On the Duality of Probing and Fault Attacks

    Get PDF
    In this work we investigate the problem of simultaneous privacy and integrity protection in cryptographic circuits. We consider a white-box scenario with a powerful, yet limited attacker. A concise metric for the level of probing and fault security is introduced, which is directly related to the capabilities of a realistic attacker. In order to investigate the interrelation of probing and fault security we introduce a common mathematical framework based on the formalism of information and coding theory. The framework unifies the known linear masking schemes. We proof a central theorem about the properties of linear codes which leads to optimal secret sharing schemes. These schemes provide the lower bound for the number of masks needed to counteract an attacker with a given strength. The new formalism reveals an intriguing duality principle between the problems of probing and fault security, and provides a unified view on privacy and integrity protection using error detecting codes. Finally, we introduce a new class of linear tamper-resistant codes. These are eligible to preserve security against an attacker mounting simultaneous probing and fault attacks

    Brief History of Quantum Cryptography: A Personal Perspective

    Full text link
    Quantum cryptography is the only approach to privacy ever proposed that allows two parties (who do not share a long secret key ahead of time) to communicate with provably perfect secrecy under the nose of an eavesdropper endowed with unlimited computational power and whose technology is limited by nothing but the fundamental laws of nature. This essay provides a personal historical perspective on the field. For the sake of liveliness, the style is purposely that of a spontaneous after-dinner speech.Comment: 14 pages, no figure
    • …
    corecore