19 research outputs found

    Tweakable HCTR: A BBB Secure Tweakable Enciphering Scheme

    Get PDF
    \textsf{HCTR}, proposed by Wang et al., is one of the most efficient candidates of tweakable enciphering schemes that turns an nn-bit block cipher into a variable input length tweakable block cipher. Wang et al. have shown that \textsf{HCTR} offers a cubic security bound against all adaptive chosen plaintext and chosen ciphertext adversaries. Later in FSE 2008, Chakraborty and Nandi have improved its bound to O(σ2/2n)O(\sigma^2 / 2^n), where σ\sigma is the total number of blocks queried and nn is the block size of the block cipher. In this paper, we propose \textbf{tweakable \textsf{HCTR}} that turns an nn-bit tweakable block cipher to a variable input length tweakable block cipher by replacing all the block cipher calls of \textsf{HCTR} with tweakable block cipher. We show that when there is no repetition of the tweak, tweakable \textsf{HCTR} enjoys the optimal security against all adaptive chosen plaintext and chosen ciphertext adversaries. However, if the repetition of the tweak is limited, then the security of the construction remains close to the security bound in no repetition of the tweak case. Hence, it gives a graceful security degradation with the maximum number of repetition of tweaks

    Faster Beta Weil Pairing on BLS Pairing Friendly Curves with Odd Embedding Degree

    Get PDF
    Since the advent of pairing-based cryptography, various optimization methods that increase the speed of pairing computations have been exploited, as well as new types of pairings. This paper extends the work of Kinoshita and Suzuki who proposed a new formula for the β \beta-Weil pairing on curves with even embedding degree by eliminating denominators and exponents during the computation of the Weil pairing. We provide novel formulas suitable for the parallel computation for the β\beta-Weil pairing on curves with odd embedding degree which involve vertical line functions useful for sparse multiplications. For computations we used Miller\u27s algorithm combined with storage and multifunction methods. Applying our framework to BLS-2727, BLS-1515 and BLS-99 curves at respectively the 256256 bit, the 192192 bit and the 128128 bit security level, we obtain faster β\beta-Weil pairings than the previous state-of-the-art constructions. The correctness of all the formulas and bilinearity of pairings obtained in this work is verified by a SageMath code

    Homomorphic Encryption without Gaussian Noise

    Get PDF
    We propose a Somewhat Homomorphic Encryption (SHE) scheme based on the Learning With Rounding (LWR) problem. The LWR problem is somewhat similar to the more classical Learning With Errors (LWE) and was proposed as a deterministic variant of it and setting up an LWR instance does not require the generation of gaussian noise. Thus our SHE scheme can be instantiated without the need for expensive Gaussian noise sampling. Our initial scheme provides lower ciphertext sizes for small plaintext spaces than existing leading schemes such as BGV

    DiLizium 2.0: Revisiting Two-Party Crystals-Dilithium

    Get PDF
    In previous years there has been an increased interest in designing threshold signature schemes. Most of the recent works focus on constructing threshold versions of ECDSA or Schnorr signature schemes due to their appealing usage in blockchain technologies. Additionally, a lot of research is being done on cryptographic schemes that are resistant to quantum computer attacks. In this work, we propose a new version of the two-party Dilithium signature scheme. The security of our scheme is based on the hardness of Module-LWE and Module-SIS problems. In our construction, we follow a similar logic as Damgård et al. (PKC 2021) and use an additively homomorphic commitment scheme. However, compared to them, our protocol uses signature compression techniques from the original Dilithium signature scheme which makes it closer to the version submitted to the NIST PQC competition. We focus on two-party signature schemes in the context of user authentication

    A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes

    Get PDF
    Since Gentry\u27s breakthrough work in 2009, homomorphic cryptography has received a widespread attention. Implementation of a fully homomorphic cryptographic scheme is however still highly expensive. Somewhat Homomorphic Encryption (SHE) schemes, on the other hand, allow only a limited number of arithmetical operations in the encrypted domain, but are more practical. Many SHE schemes have been proposed, among which the most competitive ones rely on (Ring-) Learning With Error (RLWE) and operations occur on high-degree polynomials with large coefficients. This work focuses in particular on the Chinese Remainder Theorem representation (a.k.a. Residue Number Systems) applied to large coefficients. In SHE schemes like that of Fan and Vercauteren (FV), such a representation remains hardly compatible with procedures involving coefficient-wise division and rounding required in decryption and homomorphic multiplication. This paper suggests a way to entirely eliminate the need for multi-precision arithmetic, and presents techniques to enable a full RNS implementation of FV-like schemes. For dimensions between 2112^{11} and 2152^{15}, we report speed-ups from 5×5\times to 20×20\times for decryption, and from 2×2\times to 4×4\times for multiplication

    Authenticated Encryption with Small Stretch (or, How to Accelerate AERO)

    Get PDF
    Standard form of authenticated encryption (AE) requires the ciphertext to be expanded by the nonce and the authentication tag. These expansions can be problematic when messages are relatively short and communication cost is high. To overcome the problem we propose a new form of AE scheme, MiniAE, which expands the ciphertext only by the single variable integrating nonce and tag. An important feature of MiniAE is that it requires the receiver to be stateful not only for detecting replays but also for detecting forgery of any type. McGrew and Foley already proposed a scheme having this feature, called AERO, however, there is no formal security guarantee based on the provable security framework. We provide a provable security analysis for MiniAE, and show several provably-secure schemes using standard symmetric crypto primitives. This covers a generalization of AERO, hence our results imply a provable security of AERO. Moreover, one of our schemes has a similar structure as OCB mode of operation and enables rate-1 operation, i.e. only one blockcipher call to process one input block. This implies that the computation cost of MiniAE can be as small as encryption-only schemes

    Linear Repairing Codes and Side-Channel Attacks

    Get PDF
    International audienceTo strengthen the resistance of countermeasures based on secret sharing, several works have suggested to use the scheme introduced by Shamir in 1978, which proposes to use the evaluation of a random d-degree polynomial into n d+1 public points to share the sensitive data. Applying the same principles used against the classical Boolean sharing, all these works have assumed that the most efficient attack strategy was to exploit the minimum number of shares required to rebuild the sensitive value; which is d + 1 if the reconstruction is made with Lagrange's interpolation. In this paper, we highlight first an important difference between Boolean and Shamir's sharings which implies that, for some signal-to-noise ratio, it is more advantageous for the adversary to observe strictly more than d + 1 shares. We argue that this difference is related to the existence of so-called exact linear repairing codes, which themselves come with reconstruction formulae that need (much) less information (counted in bits) than Lagrange's interpolation. In particular, this result implies that, contrary to what was believed, the choice of the public points in Shamir's sharing has an impact on the countermeasure strength. As another contribution, we exhibit a positive impact of the existence of linear exact repairing schemes; we indeed propose to use them to improve the state-of-the-art multiplication algorithms dedicated to Shamir's sharing. We argue that the improvement can be effective when the multiplication operation in the base field is at least two times smaller than in its sub-fields

    Privacy-Preserving Exploration of Genetic Cohorts with i2b2 At Lausanne University Hospital

    Get PDF
    Re-use of patients’ health records can provide tremendous benefits for clinical research. One of the first essential steps for many research studies, such as clinical trials or population health studies, is to effectively identify, from electronic health record systems, groups of well-characterized patients who meet specific inclusion and exclusion criteria. This procedure is called cohort exploration. Yet, when researchers need to compile specific cohorts of patients, privacy issues represent one of the major obstacles to accessing patients’ data, especially when sensitive data, such as genomic data, are involved. Because of this, cohort exploration could become extremely difficult and time-consuming. In this joint paper between the Ecole Polytechnique F ´ ed´ erale de Lausanne (EPFL) and the Lausanne University Hospital ´ (CHUV), we address the challenge of designing and deploying an efficient privacy-preserving explorer for genetic cohorts. Our solution is built on top of i2b2 (informatics for integrating biology and the bedside), the state-of-the-art open-source framework for cohort exploration, and exploits on cutting-edge privacy-enhancing technologies (PETs) such as homomorphic encryption and differential privacy. To the best of our knowledge, our proposed solution is the first of its kind to be successfully deployed in a real operational environment within a hospital. Especially, it has been tested as one of the services of the clinical research data-warehouse of CHUV. Solutions involving homomorphic encryption are often believed to be costly and still immature for use in operational environments. In this paper, we prove the opposite by describing how actually, for specific use cases, this kind of PETs can be very efficient enablers

    Generic Transformation of a CCA2-Secure Public-Key Encryption Scheme to an eCK-Secure Key Exchange Protocol in the Standard Model

    Get PDF
    LaMacchia, Lauter and Mityagin presented a strong security model for authenticated key agreement, namely the eCK model. They also constructed a protocol, namely the NAXOS protocol, that enjoys a simple security proof in the eCK model. However, the NAXOS protocol uses a random-oracle-based technique to combine the long-term secret key and the per-session-randomness; so-called NAXOS- trick, in order to achieve the eCK security definition. For NAXOS-trick-based protocols, the leakage of per-session-randomness modelled in the eCK model is somewhat unnatural, because the eCK model leaks per-session-randomness, while the output of the NAXOS-trick computation remains safe. In this work, we present a standard model eCK-secure protocol construction, eliminating the NAXOS-trick. Moreover, our protocol is a generic constructions, which can be instantiated with arbitrary suitable cryptographic primitives. Thus, we present a generic eCK-secure, NAXOS-free, standard model key exchange protocol. To the best of our knowledge this is the first paper on generic transformation of a CCA2-secure public key encryption scheme to an eCK-secure key exchange protocol in the standard model
    corecore