34 research outputs found

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    IMPLEMENTATION OF TRUST NEIGHBOR DISCOVERY ON SECURING IPv6 LINK LOCAL COMMUNICATION

    Get PDF
    Neighbour Discovery Protocol is a core IPv6 protocol used within the local network to provide functionalities such as Router Discovery and Neighbour Discovery. However, the standard of the protocol does not specify any security mechanism but only recommends the use of either Internet Protocol Security (IPSec) or Secure Neighbor Discovery (SEND) that has drawbacks when used within IPv6 local network. Furthermore, neither is enabled by default in the IPv6 local network; leaving the protocol unsecured. This paper proposes Trust-ND with reduced complexity by combining hard security and soft security approaches to be implemented on securing IPv6 link-local communication. The experimentation results showed that Trust-ND managed to successfully secure the IPv6 Neighbour Discovery. Trust-ND significantly cuts down the time to process NDP messages up to 77.21 ms for solicitation message and 100.732 ms for advertisement message. It also provides additional benefit over regular NDP in terms of data integrity for all Trust-ND messages with the introduction of Trust Option

    An analysis of the risk exposure of adopting IPV6 in enterprise networks

    Get PDF
    The IPv6 increased address pool presents changes in resource impact to the Enterprise that, if not adequately addressed, can change risks that are locally significant in IPv4 to risks that can impact the Enterprise in its entirety. The expected conclusion is that the IPv6 environment will impose significant changes in the Enterprise environment - which may negatively impact organisational security if the IPv6 nuances are not adequately addressed. This thesis reviews the risks related to the operation of enterprise networks with the introduction of IPv6. The global trends are discussed to provide insight and background to the IPv6 research space. Analysing the current state of readiness in enterprise networks, quantifies the value of developing this thesis. The base controls that should be deployed in enterprise networks to prevent the abuse of IPv6 through tunnelling and the protection of the enterprise access layer are discussed. A series of case studies are presented which identify and analyse the impact of certain changes in the IPv6 protocol on the enterprise networks. The case studies also identify mitigation techniques to reduce risk
    corecore