26 research outputs found

    Contracts Ex Machina

    Get PDF
    Smart contracts are self-executing digital transactions using decentralized cryptographic mechanisms for enforcement. They were theorized more than twenty years ago, but the recent development of Bitcoin and blockchain technologies has rekindled excitement about their potential among technologists and industry. Startup companies and major enterprises alike are now developing smart contract solutions for an array of markets, purporting to offer a digital bypass around traditional contract law. For legal scholars, smart contracts pose a significant question: Do smart contracts offer a superior solution to the problems that contract law addresses? In this article, we aim to understand both the potential and the limitations of smart contracts. We conclude that smart contracts offer novel possibilities, may significantly alter the commercial world, and will demand new legal responses. But smart contracts will not displace contract law. Understanding why not brings into focus the essential role of contract law as a remedial institution. In this way, smart contracts actually illuminate the role of contract law more than they obviate it

    Three Factor Authentication Using Java Ring and Biometrics

    Get PDF
    Computer security is a growing field in the IT industry. One of the important aspects of the computer security is authentication. Using passwords (something you know) is one of the most common ways of authentications. But passwords have proven to provide weak level of security as they can be easily compromised. Some other ways of authenticating a user are using physical tokens, (something you possess) and biometrics, (something you are). Using any one of these techniques to secure a system always has its own set of threats. One way to make sure a system is secure is to use multiple factors to authenticate. One of the ways to use multiple factors is to use all the three factors of authentication, something you possess, something you are and something you know. This thesis discusses about different ways of authentication and implements a system using three factor authentication. It takes many security aspects of the system into consideration while implementing it, to make it secure

    Physical one-way functions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.Includes bibliographical references (p. 149-154).Modern cryptography relies on algorithmic one-way functions - numerical functions which are easy to compute but very difficult to invert. This dissertation introduces physical one-way firnctions and physical one-way hash functions as primitives for physical analogs of cryptosystems. Physical one-way functions are defined with respect to a physical probe and physical system in some unknown state. A function is called a physical one-way function if (a) there exists a deterministic physical interaction between the probe and the system which produces an output in constant time (b) inverting the function using either computational or physical means is difficult (c) simulating the physical interaction is computationally demanding and (d) the physical system is easy to make but difficult to clone. Physical one-way hash functions produce fixed-length output regardless of the size of the input. These hash functions can be obtained by sampling the output of physical one-way functions. For the system described below, it is shown that there is a strong correspondence between the properties of physical one-way hash functions and their algorithmic counterparts. In particular, it is demonstrated that they are collision-resistant and that they exhibit the avalanche effect, i.e., a small change in the physical system causes a large change in the hash value. An inexpensive prototype authentication system based on physical one-way hash functions is designed, implemented, and analyzed.(cont.) The prototype uses a disordered three-dimensional microstructure as the underlying physical system and coherent radiation as the probe. It is shown that the output of the interaction between the physical system and the probe can be used to robustly derive a unique tamper-resistant identifier at a very low cost per bit. The explicit use of three-dimensional structures marks a departure from prior efforts. Two protocols, including a one-time pad protocol, that illustrate the utility of these hash functions are presented and potential attacks on the authentication system are considered. Finally, the concept offabrication complexity is introduced as a way of quantifying the difficulty of materially cloning physical systems with arbitrary internal states. Fabrication complexity is discussed in the context of an idealized machine - a Universal Turing Machine augmented with a fabrication head - which transforms algorithmically minimal descriptions of physical systems into the systems themselves.by Pappu Srinivasa Ravinkanth.Ph.D

    Three Factor Authentication Using Java Ring and Biometrics

    Get PDF
    Computer security is a growing field in the IT industry. One of the important aspects of the computer security is authentication. Using passwords (something you know) is one of the most common ways of authentications. But passwords have proven to provide weak level of security as they can be easily compromised. Some other ways of authenticating a user are using physical tokens, (something you possess) and biometrics, (something you are). Using any one of these techniques to secure a system always has its own set of threats. One way to make sure a system is secure is to use multiple factors to authenticate. One of the ways to use multiple factors is to use all the three factors of authentication, something you possess, something you are and something you know. This thesis discusses about different ways of authentication and implements a system using three factor authentication. It takes many security aspects of the system into consideration while implementing it, to make it secure

    Contracts \u3cem\u3eEx Machina\u3c/em\u3e

    Get PDF
    Smart contracts are self-executing digital transactions using decentralized cryptographic mechanisms for enforcement. They were theorized more than twenty years ago, but the recent development of Bitcoin and blockchain technologies has rekindled excitement about their potential among technologists and industry. Startup companies and major enterprises alike are now developing smart contract solutions for an array of markets, purporting to offer a digital bypass around traditional contract law. For legal scholars, smart contracts pose a significant question: Do smart contracts offer a superior solution to the problems that contract law addresses? In this article, we aim to understand both the potential and the limitations of smart contracts. We conclude that smart contracts offer novel possibilities, may significantly alter the commercial world, and will demand new legal responses. But smart contracts will not displace contract law. Understanding why not brings into focus the essential role of contract law as a remedial institution. In this way, smart contracts actually illuminate the role of contract law more than they obviate it

    AICPA technical practice aids as of June 1, 2013

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2667/thumbnail.jp

    AICPA technical practice aids as of June 1, 2014

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2703/thumbnail.jp

    AICPA technical practice aids as of June 1, 2009, volume 1

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1356/thumbnail.jp
    corecore