258 research outputs found

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    Learning DNFs under product distributions via {\mu}-biased quantum Fourier sampling

    Full text link
    We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The best classical algorithm (without access to membership queries) runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficiently learnable under the uniform distribution using a quantum example oracle. Our proof is based on a new quantum algorithm that efficiently samples the coefficients of a {\mu}-biased Fourier transform.Comment: 17 pages; v3 based on journal version; minor corrections and clarification

    From average case complexity to improper learning complexity

    Full text link
    The basic problem in the PAC model of computational learning theory is to determine which hypothesis classes are efficiently learnable. There is presently a dearth of results showing hardness of learning problems. Moreover, the existing lower bounds fall short of the best known algorithms. The biggest challenge in proving complexity results is to establish hardness of {\em improper learning} (a.k.a. representation independent learning).The difficulty in proving lower bounds for improper learning is that the standard reductions from NP\mathbf{NP}-hard problems do not seem to apply in this context. There is essentially only one known approach to proving lower bounds on improper learning. It was initiated in (Kearns and Valiant 89) and relies on cryptographic assumptions. We introduce a new technique for proving hardness of improper learning, based on reductions from problems that are hard on average. We put forward a (fairly strong) generalization of Feige's assumption (Feige 02) about the complexity of refuting random constraint satisfaction problems. Combining this assumption with our new technique yields far reaching implications. In particular, 1. Learning DNF\mathrm{DNF}'s is hard. 2. Agnostically learning halfspaces with a constant approximation ratio is hard. 3. Learning an intersection of ω(1)\omega(1) halfspaces is hard.Comment: 34 page

    Distribution-Independent Evolvability of Linear Threshold Functions

    Full text link
    Valiant's (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant's framework (2007). One of the main open problems regarding the model is whether conjunctions are evolvable distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative. Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the complexity of learning from correlations. We contrast the lower bound with a proof that linear threshold functions having a non-negligible margin on the data points are evolvable distribution-independently via a simple mutation algorithm. Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of 0-1 loss in Valiant's (2007) original definition. The proof of evolvability requires that the loss function satisfies several mild conditions that are, for example, satisfied by the quadratic loss function studied in several other works (Michael, 2007; Feldman, 2009; Valiant, 2010). An important property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability without any decreases in performance. Previously, monotone evolvability was only shown for conjunctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely restricted (Michael, 2007; Feldman, 2009; Kanade et al., 2010

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [−1,1][-1,1]-valued dd-resilient function in ℓ1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between ℓ1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that ℓ1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions
    • …
    corecore