53 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea

    Blocking DDoS attacks at the network level

    Get PDF
    Denial of service (DDoS) is a persistent and continuously growing problem. These attacks are based on methods that flood the victim with messages that it did not request, effectively exhausting its computational or bandwidth resources. The variety of attack approaches is overwhelming and the current defense mechanisms are not completely effective. In today’s internet, a multitude of DDoS attacks occur everyday, some even degrading the availability of critical or governmental services. In this dissertation, we propose a new network level DDoS mitigation protocol that iterates on previous attempts and uses proven mechanisms such as cryptographic challenges and packet-tagging. Our analysis of the previous attempts to solve this problem led to a ground-up design of the protocol with adaptability in mind, trying to minimize deployment and adoption barriers. With this work we concluded that with software changes only on the communication endpoints, it is possible to mitigate the most used DDoS attacks with results up to 25 times more favourable than standard resource rate limiting (RRL) methods

    Re-feedback: freedom with accountability for causing congestion in a connectionless internetwork

    Get PDF
    This dissertation concerns adding resource accountability to a simplex internetwork such as the Internet, with only necessary but sufficient constraint on freedom. That is, both freedom for applications to evolve new innovative behaviours while still responding responsibly to congestion; and freedom for network providers to structure their pricing in any way, including flat pricing. The big idea on which the research is built is a novel feedback arrangement termed ‘re-feedback’. A general form is defined, as well as a specific proposal (re-ECN) to alter the Internet protocol so that self-contained datagrams carry a metric of expected downstream congestion. Congestion is chosen because of its central economic role as the marginal cost of network usage. The aim is to ensure Internet resource allocation can be controlled either by local policies or by market selection (or indeed local lack of any control). The current Internet architecture is designed to only reveal path congestion to end-points, not networks. The collective actions of self-interested consumers and providers should drive Internet resource allocations towards maximisation of total social welfare. But without visibility of a cost-metric, network operators are violating the architecture to improve their customer’s experience. The resulting fight against the architecture is destroying the Internet’s simplicity and ability to evolve. Although accountability with freedom is the goal, the focus is the congestion metric, and whether an incentive system is possible that assures its integrity as it is passed between parties around the system, despite proposed attacks motivated by self-interest and malice. This dissertation defines the protocol and canonical examples of accountability mechanisms. Designs are all derived from carefully motivated principles. The resulting system is evaluated by analysis and simulation against the constraints and principles originally set. The mechanisms are proven to be agnostic to specific transport behaviours, but they could not be made flow-ID-oblivious

    Improving Dependability of Networks with Penalty and Revocation Mechanisms

    Get PDF
    Both malicious and non-malicious faults can dismantle computer networks. Thus, mitigating faults at various layers is essential in ensuring efficient and fair network resource utilization. In this thesis we take a step in this direction and study several ways to deal with faults by means of penalties and revocation mechanisms in networks that are lacking a centralized coordination point, either because of their scale or design. Compromised nodes can pose a serious threat to infrastructure, end-hosts and services. Such malicious elements can undermine the availability and fairness of networked systems. To deal with such nodes, we design and analyze protocols enabling their removal from the network in a fast and a secure way. We design these protocols for two different environments. In the former setting, we assume that there are multiple, but independent trusted points in the network which coordinate other nodes in the network. In the latter, we assume that all nodes play equal roles in the network and thus need to cooperate to carry out common functionality. We analyze these solutions and discuss possible deployment scenarios. Next we turn our attention to wireless edge networks. In this context, some nodes, without being malicious, can still behave in an unfair manner. To deal with the situation, we propose several self-penalty mechanisms. We implement the proposed protocols employing a commodity hardware and conduct experiments in real-world environments. The analysis of data collected in several measurement rounds revealed improvements in terms of higher fairness and throughput. We corroborate the results with simulations and an analytic model. And finally, we discuss how to measure fairness in dynamic settings, where nodes can have heterogeneous resource demands

    Secure MAC protocols for cognitive radio networks

    Get PDF
    A thesis submitted in partial fulfilment for the degree of Doctor of PhilosophyWith the rapid increase in wireless devices, an effective improvement in the demand of efficient spectrum utilisation for gaining better connectivity is needed. Cognitive Radio (CR) is an emerging technology that exploits the inefficient utilisation of the unused spectrum dynamically. Since spectrum sharing is responsible for coordinating channels’ access for Cognitive Users (CUs), the Common Control Channel (CCC) is one of the existing methods used to exchange the control information between CUs. However, the unique characteristics and parameters of Cognitive Radio Networks (CRNs) present several possible threats targeting spectrum sensing, spectrum management, spectrum sharing, and spectrum mobility leading to the deterioration of the network performance. Thus, protection and detection security mechanisms are essential to maintaining the CRNs. This thesis presents a novel decentralised CR MAC protocol that successfully utilises the unused portion of the licensed band. The protocol achieves improved performance; communication time and throughput when compared to two benchmark protocols. Less communication time and higher throughput are accomplished by the protocol due to performing fast switching to the selected available data channel for initiating data transmission. The proposed protocol is then extended to two different versions based on two authentication approaches applied to it; one using Digital Signature and another is based on Shared-Key. The two proposed secure protocols address the security requirements in CRNs leading to subsequent secure communication among CUs. The protocols function effectively in providing defence against several attacks related to the MAC layer such as; Spectrum Sensing Data Manipulation/Falsification, Data Tempering and Modification, Jamming attacks, Eavesdropping, Forgery and Fake control information attacks, MAC address spoofing, and unauthorised access attacks. The associated security algorithms ensure the successful secure communication between CUs in a cooperative approach. Moreover, the security protocols are investigated and analysed in terms of security flows by launching unauthorised access and modification attacks on the transmitted information. The testing results demonstrated that two protocols perform successful detection of threats and ensure secure communication in CRNs

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    A layered security approach for cooperation enforcement in MANETs

    Get PDF
    In fully self-organized MANETs, nodes are naturally reluctant to spend their precious resources forwarding other nodes' packets and are therefore liable to exhibit selfish or sometimes malicious behaviour. This selfishness could potentially lead to network partitioning and network performance degradation. Cooperation enforcement schemes, such as reputation and trust based schemes have been proposed to counteract the issue of selfishness. The sole purpose of these schemes is to ensure selfish nodes bear the consequences of their bad actions. However, malicious nodes can exploit mobility and free identities available to breach the security of these systems and escape punishment or detection. Firstly, in the case of mobility, a malicious node can gain benefit even after having been detected by a reputation-based system, by interacting directly with its source or destination nodes. Secondly, since the lack of infrastructure in MANETs does not suit centralized identity management or centralized Trusted Third Parties, nodes can create zero-cost identities without any restrictions. As a result, a selfish node can easily escape the consequences of whatever misbehaviour it has performed by simply changing identity to clear all its bad history, known as whitewashing. Hence, this makes it difficult to hold malicious nodes accountable for their actions. Finally, a malicious node can concurrently create and control more than one virtual identity to launch an attack, called a Sybil attack. In the context of reputation-based schemes, a Sybil attacker can disrupt the detection accuracy by defaming other good nodes, self-promoting itself or exchanging bogus positive recommendations about one of its quarantined identities. This thesis explores two aspects of direct interactions (DIs), i. e. Dis as a selfish nodes' strategy and Dis produced by inappropriate simulation parameters. In the latter case DIs cause confusion in the results evaluation of reputation-based schemes. We propose a method that uses the service contribution and consumption information to discourage selfish nodes that try to increase their benefit through DIs. We also propose methods that categorize nodes' benefits in order to mitigate the confusion caused in the results evaluation. A novel layered security approach is proposed using proactive and reactive paradigms to counteract whitewashing and Sybil attacks. The proactive paradigm is aimed at removing the advantages that whitewashing can provide by enforcing a non-monetary entry fee per new identity, in the form of cooperation in the network. The results show that this method deters these attackers by reducing their benefits in the network. In the reactive case, we propose a lightweight approach to detect new identities of whitewashers and Sybil attackers on the MAC layer using the 802.11 protocol without using any extra hardware. The experiments show that a signal strength based threshold exists which can help us detect Sybil and whitewashers' identities. Through the help of extensive simulations and real-world testbed experimentations, we are able to demonstrate that our proposed solution detects Sybil or whitewashers' new identities with good accuracy and reduces the benefits of malicious activity even in the presence of mobility
    corecore